Search Results

You are looking at 81 - 90 of 648 items for :

  • "controlled environment" x
Clear All
Free access

Kent E. Cushman, Theodore W. Tibbitts, Thomas D. Sharkey and Robert R. Wise

Expanding leaflets of young `Kennebec' potato plants (Solanum tuberosum L.) develop visible necrotic spotting after 8 to 9 days of constant light and constant temperature, but little is known about this disorder before the appearance of injury. Whole-leaf autoradiography and iodine staining of terminal leaflets (5 to 10 mm long at the beginning of the constant-light period) showed a normal pattern of CO2 assimilation and starch content over the entire leaflet surface after 5 days of constant light. However, small areas of tissue devoid of CO2 assimilation and starch content became apparent on day 6, and these areas expanded to encompass much of the leaflet's medial and basal regions by day 7. At this stage of leaf development, on day 7, leaflets had attained 50% of their final leaflet length and ceased importing photosynthates from other leaves. Electron micrographs of chloroplasts from the medial and basal regions of leaflets on day 7 revealed a loss of membrane integrity and a senescence-like appearance. At this time, and within these affected regions, scattered groups of necrotic palisade cells began to appear. These scattered groups soon expanded in size and distribution and became apparent as visible necrotic spots on the upper leaflet surface by day 8 or 9. Leaflets on plants grown under constant light hut alternating temperatures, an environment known to be noninjurious, did not exhibit visible spotting or tissue devoid of starch content. In addition, none of these injury symptoms developed in `Denali', a potato cultivar tolerant of constant light. Despite its occurrence in expanding leaf tissue, constant-light injury appears to be a senescence-like event that leads to the catastrophic loss of photosynthetic competence, starch content, and chloroplast membrane integrity, producing chlorosis and necrosis of leaves and eventually stunting the plant.

Free access

Kyle R. Mankin and R. Peter Fynn

Nutrient uptake by New Guinea impatiens (Impatiens X hb.) `Equinox' was measured in a growth chamber under various combinations of light [photosynthetic photon flux (PPF)], air temperature, and nutrient solution concentration. Nitrate-N, P, K, Ca, and Mg ions were evaluated individually by measuring depletion of each nutrient from a constant-volume solution over 9 hours with constant environmental conditions. Individual nutrient uptake was not correlated to concurrent daily temperature environment, and only K and Mg showed a correlation with PPF. Uptake rates of N, P, K, Ca, and Mg increased significantly with increasing nutrient solution concentration. Estimated net assimilation rates of nutrients, based on measured shoot tissue concentrations of each nutrient and assuming that uptake occurred continuously at a rate proportional to canopy area, were correlated to average measured uptake rates for N, Ca, and Mg and were not correlated to average uptake rates for P and K. Although nutrient demand from plant growth may determine rates of nutrient uptake necessary over longer periods of time, short-term uptake was not related directly to daily fluctuations in environmental factors.

Free access

Gary W. Stutte, Neil C. Yorio and Raymond M. Wheeler

The effect of photoperiod (PP) on net carbon assimilation rate (Anet) and starch accumulation in newly mature canopy leaves of `Norland' potato (Solanum tuberosum L.) was determined under high (412 ∝mol·m-2·s-1) and low (263 ∝mol·m-2·s-1) photosynthetic photon flux (PPF) conditions. The Anet decreased from 13.9 to 11.6 and 9.3 μmol·m-2·s-1, and leaf starch increased from 70 to 129 and 118 mg·g-1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/6, and 24/0, respectively. Longer PP had a greater effect with high PPF conditions than with low PPF treatments, with high PPF showing greater decline in Anet. Photoperiod did not affect either the CO2 compensation point (50 μmol·mol-1) or CO2 saturation point (1100-1200 μmol·mol-1) for Anet. These results show an apparent limit to the amount of starch that can be stored (≈15% DM) in potato leaves. An apparent feedback mechanism exists for regulating Anet under high PPF, high CO2, and long PP, but there was no correlation between Anet and starch concentration in individual leaves. This suggests that maximum Anet cannot be sustained with elevated CO2 conditions under long PP (≥12 hours) and high PPF conditions. If a physiological limit exists for the fixation and transport of carbon, then increasing photoperiod and light intensity under high CO2 conditions is not the most appropriate means to maximize the yield of potatoes.

Free access

Chieri Kubota and Mark Kroggel

Increasing numbers of greenhouse vegetable growers purchase transplants from specialized transplant propagators. Possible deterioration of transplants during transportation limits the market size as well as the potential sources of high-quality transplants. To determine the best conditions for transportation of seedlings, tomato (Lycopersicon esculentum Mill., cv. Durinta) seedlings with visible flower trusses were placed for 4 days inside growth chambers to evaluate the effects of short-term exposure to different air temperatures (6, 13, or a conventional transportation temperature of 19 °C) under darkness or illumination at 12 μmol·m–2·s–1 PPF. Plants were evaluated for visual quality, photosynthetic ability, growth, and fruit yield. Lower temperatures and illumination significantly maintained visual quality of the seedlings. Lower temperature maintained high photosynthetic ability of seedlings during the 4-day treatment. After transplanting in the greenhouse, a significant number of trusses exhibited flower abortion or delayed fruit development when seedlings were treated at 19 °C regardless of light intensity. Results suggested that 6 to 13 °C was the best transportation temperature for up to 4 days, which was later validated by an actual transportation trial between British Columbia and Arizona.

Free access

Jocelyn L. Catley and Ian R. Brooking

We thank Chrysalis Holdings, Waikanae, New Zealand, for supplying plant material; members of the New Zealand National Climate Laboratory Technical Services Group for maintenance of the controlled-environment rooms during this study; and H

Free access

John L. Jifon and David W. Wolfe

142 ORAL SESSION 41 (Abstr. 662–667) Controlled Environments–Vegetables

Free access

Donald T. Krizek, Steven J. Britz and Roman M. Mirecki

142 ORAL SESSION 41 (Abstr. 662–667) Controlled Environments–Vegetables

Free access

C.L. Mackowiak, J.L. Garland and R.M. Wheeler

142 ORAL SESSION 41 (Abstr. 662–667) Controlled Environments–Vegetables

Free access

T.W. Tibbitts, J.G. Croxdale, C.S. Brown and R.M. Wheeler

150 ORAL SESSION 34 (Abstr. 243–248) Controlled Environment