Search Results

You are looking at 71 - 80 of 2,245 items for :

  • photoperiod x
Clear All

Two studies were conducted to determine the influence of decapitation (pinch treatment) and photoperiod treatments on stem length, days from planting to harvest, and flowering stem yield in two delphinium cultivars. Plants of Delphinium ×belladonna Hort. ex Bergmans `Völkerfrieden' received a hard pinch (removal of apex and all stem and leaf tissue associated with leaves ≤10 cm), soft pinch (removal of apex and all stem and leaf tissue associated with leaves ≤4 cm), or no pinch. Plants of the D. elatum L. `Barbara' series were grown under either long- or short-day photoperiod, each treatment with or without receiving a soft-pinch. Time from planting to harvest was longer in pinched plants than in nonpinched plants of both cultivars regardless of photoperiod. Flowering stems were longer in hard- and soft-pinched plants of `Völkerfrieden' compared to nonpinched plants, and with `Barbara', stem length of pinched plants was either longer or similar to that of nonpinched plants regardless of photoperiod. At 30 days after the commencement of harvest, yield of flowering stems for hard-pinched plants of `Völkerfrieden' was higher than that for nonpinched plants, but yield from soft-pinched plants was similar to that for those not pinched. Stem yield for `Barbara' was higher for pinched plants under the long-day photoperiod, but under short days, yield from pinched plants was similar to that for those not pinched. Long days appear to increase yield and reduce production time in delphinium cultivars. Commercial benefits may be realized by growing nonpinched plants for earliness and pinched plants for longer stems and higher yield.

Free access

Containerized `Climax' and `Beckyblue' rabbiteye blueberry plants (Vaccinium ashei Reade) were exposed to 5 weeks of natural daylengths or shortened daylengths starting 30 Sept. `Beckyblue' plants exposed to short daylengths in the fall initiated more flower buds and had a shorter, more concentrated bloom period than did plants exposed to natural fall daylengths. Reproductive development of `Climax' was not influenced by photoperiod treatments. Leaf carbon assimilation of both cultivars increased under short days. Partitioning of translocated 14C-labeled assimilates to stem tissue increased under short photoperiods for `Beckyblue'; however, partitioning patterns in `Climax' were not affected. Increased carbon fixation and increased partitioning of carbon to stem tissue under short days may contribute to the observed effect of short days on enhancing reproductive development in `Beckyblue'.

Free access
Author:

The interaction among temperature, photoperiod, and irradiance on survival of Chamaecereus silvestrii (yellow sport) flat-grafted onto Hylocereus trigonus Haw. rootstock was studied in an effort to understand the basis for elevated scion necrosis during winter. Plants were placed in glasshouses maintained at 12, 16, 20, or 24 °C under either daylight (moles per day), 66% daylight or daylight + 100 μmol·s−1·m−2 irradiance levels. Plants were grown with an 8-hour (short day) or 8-hour + 4-hour night interruption (long day) photoperiod. Cactus scion necrosis increased under short days and a growing temperature of 12 °C and was nearly eliminated by long-day conditions and a growing temperature of 16 °C. Irradiance did not affect scion necrosis. Plant quality rating was highest when plants were grown under long-day conditions at 16 °C.

Full access

Rooting of cuttings from three cultivars of Euphorbia pulcherrima Willd. was evaluated after regulating the photoperiod during the stock plant stage. One group of stock plants was exposed to a night break (4 hours) and another group was exposed to natural daylength during September. Cuttings harvested in late September from `Freedom Red' and `Monet' stock plants grown under the 4-hour night break rooted more rapidly and had greater root mass than `Freedom Red' and `Monet' grown under natural daylength, whereas rooting of cuttings from `V-17 Angelika Marble' was not influenced by the photoperiods tested. Using a night break to prevent flower initiation of stock plants produced a higher-quality cutting when propagation took place after the critical daylength for flowering had passed.

Full access

Flowering responses of two Anigozanthos hybrids were investigated. Flowering of 20-week old `Regal Claw' and A. manglesii x A. flavidus either from the main fan or the lateral fans was accelerated when plants received a night temp of 13 C, regardless of the photoperiod treatments. Temperature was the major factor controlling flowering of Anigo- zanthos hybrids. Flowering was accelerated from the lateral fans by treating plants at 15.5 or 18 C and a long day (LD) photoperiod. There were fewer than 2.5 branches in the stem at 18 C compared to more than 4.0 branches at 13 C. A night temp of 13 C was optimum for early flowering and for increased quality of cut flowers. At an inductive night temp of 13 C, Anigozanthos hybrids are day neutral while at 15.5 or 18 C they are quantitative LD plants.

Free access

Incremental increases in temperature from 14 to 22 to 30C resulted in linear increases in stem length and node number and decreases in stem diameter and stem strength of Oxypetalum caeruleum (D. Don.) Decne. Higher temperatures also resulted in additional flower abortion, reduced time to flowering, and fewer flowering stems per inflorescence. Reduction in the photosynthetic photon flux (PPF) from 695 to 315 μmol·s-1·m-2 had similar effects as increasing the temperature on vegetative characteristics, but had little effect on reproductive ones. The rate of stem elongation was greatest at low PPF for all temperatures and at high temperature for all PPF treatments. Net photosynthesis rose between 14 and 22C and declined at 30C for all PPF treatments. Long photoperiods (12 or 14 hours) resulted in longer internodes, longer stems, and more flowers per cyme than short photoperiods (8 or 10 hours), but photoperiod had little effect on flowering time. Treatments to reduce latex coagulant and silver thiosulfate treatments had no significant effect on vase life.

Free access
Authors: and

Abstract

Cut flower Gerbera (Gerbera jamesonii Bolus) plants were grown in pots or ground benches under various photoperiods, levels of irradiance, and soil temperatures. Photoperiodic flowering response varied with the 3 cultivars; ‘Appelbloesem’ was not sensitive to photoperiod; ‘Oranje Nasau’ and ‘Fabiola’ were promoted by short day (SD). In pot-grown Gerbera, SD increased the number of flowers (inflorescences) per plant of ‘Oranje Nassau’ and ‘Fabiola’ in the summer-fall and fall-winter. Supplementary lighting with high-pressure sodium (HPS) lamps increased the fall-winter production of all 3 cultivars. Plants grown under 16 hr photoperiod by extending natural day length with incandescent light (INC) produced the least flowers per plant in both summer-fall and fall-winter. In bench-grown Gerbera, supplementary HPS increased the number of flowers during the fall-winter as compared to natural daylight (ND). Soil warming from 16°−20° to 23°C had no effect on productivity, but increased the peduncle length.

Open Access

Dense-flowered loosestrife is a quantitative long-day (LD) plant. Plants given a LD photoperiod (16 hours) flowered 21 and 34 days earlier than plants given 12- and 8-hour photoperiods, respectively. Plants under LDs produced significantly more flowers than those under 8- and 12-hour photoperiods. Only 1 week of LD was needed for 100% flowering; however, optimum flower count and size were produced with 3 weeks of LD. Plant dry weight did not differ significantly among treatments; however, LDs produced fewer but larger leaves, particularly those subtending the inflorescence. Total plant growth increased as temperature increased, but lower temperature (10C) decreased flower initiation and prevented flower development. High temperature (26C) reduced the persistence of open flowers. The optimum temperature for dense-flowered loosestrife growth was ≈20C. Flowering was accelerated and dry weight production increased as irradiance levels increased from 100 to 300 μmol·m–2·s–1.

Free access

photoperiod or a 10-minute EOD-FR treatment showed less than 40% of the low R:FR-induced elongation responses and similar hypocotyl length compared with control plants, respectively. For lettuce, Zou et al. (2019) found that a 1-hour EOD-FR treatment

Open Access
Authors: and

Abstract

A 50% increase in total radiation by extending the photoperiod from 16 to 24 hr doubled the weight of all cultivars of loose-leaf lettuce (Lactuca sativa L.) ‘Grand Rapids Forcing’, ‘Waldmanns Green’, ‘Salad Bowl’, and ‘RubyConn’, but not a Butterhead cultivar, ‘Salina’. When total daily radiation (moles of photons) was the same, plants under continuous radiation weighed 30% to 50% more than plants under a 16 hr photoperiod. By using continuous radiation on loose-leaf lettuce, fewer lamp fixtures were required and yield was increased.

Open Access