Nutrient release patterns from several different controlled-release fertilizers (CRF) were studied during the overwintering period of a long-term nutrient uptake, leaching, and loss study of Azalea (Rhododendron) cv. `Karen' and Holly (Ilex cornuta) cv. `China Girl', under sprinkler and drip irrigation. In Maryland, diurnal winter temperatures can vary from ≈10 °C to above 15 °C. Most growers, therefore, cover frames with opaque plastic for cold protection from November through April. This is also the period when many growers apply CRFs on those plant species that take more than 1 year to produce. Few data are presently available on the release patterns of CRFs under variable temperature conditions in late winter/early spring. We hypothesized that substrate temperatures warmer than 15–16 °C will result in CRFs releasing nutrients at a time when root systems are inactive, with a major loss of nutrients with the first few irrigations in Spring. This 105-day study quantified nitrogen (N) and phosphorus release patterns from four brands of CRF (Osmocote, Nutricote, Scotts High N, and Polyon) with 270- and 360-day release rates, under these conditions. Each CRF was top dressed onto blocks of 18-month-old holly or azalea (n = 112) in 11.5-L (3-gal) containers, at a (low) rate of 6.1 g N per container. Ten randomly selected pots from each treatment were sampled every 15 days using two sequential leachings of distilled water, for a target leaching fraction of 25%. Leachates were recovered and analyzed for nitrate and orthophosphate concentrations. Ambient canopy temperatures were recorded continuously with remote temperature (HoBo) sensors from which degree days above 15–16 °C were calculated and correlated with CRF release patterns.
The mineral nutrition requirements and fertilizer application methods for container-grown shade tree whips are not well understood. This experiment was conducted to determine the effects of fertility method (water soluble vs. controlled release) on growth, water, and N use efficiency of four taxa [(Acer ×freemanii `Jeffersred' (Autumn Blaze® maple), Cercis canadensis L. (Eastern redbud), Malus (Mill.), `Prairifire' (Prairifire crabapple), and Quercus rubra L. (red oak)] in two production environments [outdoor gravel pad vs. a retractable roof structure (RRS)]. No single fertilizer method consistently resulted in the greatest growth. In the RRS, maple and crabapple heights, and crabapple and redbud caliper were larger when whips were fertilized with controlled-release fertilizer (CRF); outdoors, CRF resulted in taller maples and larger caliper crabapples. However, in the RRS, maple whips fertilized with water-soluble fertilizer had higher production water use efficiency than those fertilized with CRF, whereas crabapple whips had higher N use efficiency when fertilized with CRF. Nitrogen use efficiency was higher for redbud and crabapple whips fertilized with CRF than with CRF. Outside, crabapple whips fertilized with CRF had higher production water use efficiency than those fertilized with water-soluble fertilizer. There were no differences in N use efficiency attributed to fertilizer method. When averaged over fertilizer application methods, height, caliper, water, and N use efficiency were greater when whips were grown in RRS than outdoors. There were two exceptions: Maple caliper and production water use efficiency were marginally higher when whips were grown outdoors. The greater growth for whips produced in the RRS was attributed to reduced ambient and substrate temperature stress.
The objectives of this study were to determine 1) the minimum controlled-release fertilizer (CRF) rate and the lowest constant medium moisture required to produce the highest quality plants and 2) if this production system affected quality of these plants under two postproduction light levels. Two New Guinea impatiens (Impatiens sp. hybrids) `Illusion' and `Blazon' (Lasting Impressions Series) differing in salt tolerance were grown for 42 days with a CRF at three rates (3.3, 6.6, or 9.9 g/pot) and two medium moisture levels (low or high) without leaching. The high moisture level (tension setpoints of 1 to 3 kPa) and 6.6 g of CRF/pot produced optimum biomass. Low medium moisture (tension setpoints of 4 to 6 kPa) reduced leaf area, leaf number, leaf N content, root, stem, and leaf dry masses as CRF rate increased from low to high for `Illusion'. Similar results in `Blazon' were observed as CRF rates increased from 3.3 to 6.6 g. Biomass decreased no further at the high rate of 9.9 g/pot. Biomass increased in both cultivars under high medium moisture when CRF rates increased from 3.3 to 6.6 g. Biomass of `Illusion' decreased at 9.9 g/pot, although no symptoms of salt sensitivity were observed (i.e., leaf tip burn). `Blazon' maintained a similar biomass when amended with 9.9 or 6.6 g CRF/pot, although electrical conductivity (EC) in the medium was 5.9 dS·m-1 in the upper half and 4.1 dS·m-1 in the lower half of the medium at the end of production. Growth of `Illusion' responded more favorably to postproduction light levels that were similar to those of production regardless of treatment imposed during production. Similar biomass responses occurred for `Blazon' regardless of the postproduction light level.
New guinea impatiens (Impatiens hawkeri) (NGI) `Pure Beauty Rose' (PBR) and `Paradise Orchid' (PO) were grown in full sun, 55% shade, or 73% shade and fertilized with a controlled-release fertilizer (CRF) [Nutricote Total 13-13-13 (13N-5.7P-10.8K), type 100] incorporated at rates of 2, 4, 6, 8, 12, 16, 20, 24, 28 and 32 lb/yard3 of growing media (1.2, 2.4, 3.6, 4.7, 7.1, 9.5, 11.9, 14.2, 16.6, and 19.0 kg·m-3). Plant quality rating, shoot dry weight, and flower number were measured at harvest and substrate samples were collected to analyze final substrate pH and electrical conductivity (EC). For both cultivars, light intensity and fertilization rate interactions were different for shoot dry weight and flower number, but there was no difference in plant quality rating between the light levels. Quality ratings of both PBR and PO plants increased as CRF rate increased to 12 to 16 lb/yard3 above these levels quality was not improved. Shoot dry weight of PBR plants grown in full sun increased as CRF rate increased to 28 lb/yard3 and then decreased, while shoot dry weight of plants grown with 55% and 73% shade increased as CRF rate increased to 20 and 16 lb/yard3, respectively, with no further increases. Shoot dry weight of PO plants grown in full sun and 55% shade increased as CRF rate increased to 28 and 24 lb/yard3, respectively, with no further increases, while shoot dry weight of plants grown with 73% shade increased as CRF rate increased to 24 lb/yard3 and then decreased. Flower number of PBR plants grown in full sun, 55% shade, and 73% shade increased as CRF rate increased to 24 lb/yard3 and then decreased. Flower number of PO plants grown in full sun increased as CRF rate increased to 28 lb/yard3 and then decreased, while flower number of plants grown in 55% and 73% shade increased as CRF rate increased to 24 lb/yard3 and then decreased.
Pelargonium ×hortorum Bailey `Pinto Red' plants were fertilized with equal amounts of N, P, and K derived from: 1) 100% constant liquid fertilization (CLF); 2) 50% CLF plus 50% controlled-release fertilizer (CRF); or 3) 100% CRF per pot and irrigated using hand (HD), microtube (MT), ebb-and-flow (EF), or capillary mat (CM) irrigation systems. The treatment receiving 100% CRF produced greater total dry weights, and released lower concentrations of NO3-N, NH4-N, and PO4-P in the run-off than the 100% CLF treatment. The percentage of N lost as run-off was greatly reduced with the use of CRF. MT irrigation produced the greatest plant growth and HD irrigation produced the least. The EF system was the most water efficient, with only 4.7% of water lost as run-off. Combining the water-efficient EF system with the nutrient-efficient CRF produced the greatest percentage of N retained by plants and medium (90.7) and the lowest percentage of N lost in the run-off (1.7).
Nitrate nitrogen is becoming a major pollutant in much of our nation's water supply. High levels of nitrate runoff are commonly found to occur from intense agricultural areas such as container nurseries. The objective of this study was to investigate combinations of liquid fertilizer (LF) plus controlled-release fertilizer (CRF) that would both minimize nitrate runoff and provide nutrient levels for optimum growth of Ilex verticillata L. The experiment was established in 1998 at the Iowa State Univ. Horticulture Research Station, Ames. Six fertilizer treatments were arranged in a randomized block design with eight replications. Treatment combinations of liquid fertilizer (LF) and controlled-release fertilizer (CRF) were [LF (mg/L)/CRF (g)]: 90/0, 90/8.5, 90/17, 180/0, 180/8.5, 180/17 (Peter's Excel 21-5-20 and Osmocote 18-6-12, 9-month release, respectively). Analysis of nitrate leaching showed that in 12 out of 16 weeks, the 180 mg/L LF treatments resulted in twice the amount of nitrate leached compared to the 90 mg/L LF. In 3 out of 16 weeks, treatments containing 0 g CRF leached significantly less nitrate than those containing 17 g CRF. None of the treatments produced a difference in total dry weight or caliper of Ilex verticlillata L. This data suggests that plant growth remains similar over a range of fertilizer input and higher rates of applied LF result in higher nitrate leaching.
Plants of rosemary [Rosmarinus officinalis L. (Lamiaceae)] were grown in pots containing a soilless (1 sphagnum peat:1 perlite) or soil-based (1 sphagnum peat: 1 perlite:1 field soil) growing medium and fertilized with either 12N-5.2P-12.5K controlled-release fertilizer (CRF) at 9.0 g/pot; constant liquid fertilization (LF) with 20N4.3P-16.7K at 150 mg N/liter; constant LF at 150 mg N/liter, plus CRF at 4.5 g/pot; weekly LF at 150 mg N/liter; or weekly LF at 150 mg N/liter, plus CRF at 4.5 g/pot. Constant LF plus CRF generally reduced plant height and depressed shoot fresh weight relative to other fertilizer regimes. Essential oil content was highest in plants receiving weekly LF. Plants grown in the soil-based mix were shorter, shoot fresh and dry weight tended to be lower, and essential oil yield was higher when compared to plants grown in the soilless mix. Satisfactory growth was obtained in both media when rosemary plants were fertilized with 12N-5.2P-12.5K CRF at 9.0 g/pot or weekly LF with 20N<.3P-16.7K at 150 mg N/liter.
) evaluated the growth of the sedum cultivars ‘Diffusum’ and ‘Royal Pink’ in modules treated each spring with four levels (0, 50, 100, and 150 g·m −2 ) of 13N–5.7P–10.8K CRF (Nutricote™ Type 180, 6-month formulation; Plantco, Brampton, ON, Canada). By the end
Herbaceous perennials are the hottest item in the ornamental industry, yet relatively little is known about the most appropriate management and cultural practices for many of these species. The response of selected perennials to controlled-release fertilizer (CRF) rates was evaluated in this study. Liners of Coreopsis `Early Sunrise' and `Zagreb', Astilbe `Bridal veil', Hemerocallis `Stelladoro', Phlox `Franz Shubert', and Rudbeckia `Goldstrum' were transplanted to 5.7-L pots filled with a 2 peat: 1 perlite (v/v) medium amended with dolomite and Micromax (2 and 0.6 kg·m-3, respectively). Plants were topdressed with Osmocote 18N-2.7P-10K at rates of 0, 1.8, 3.6, 5.3, 7.1 (industry standard) and 8.9 kg·m-3, and grown over a 3-month period. Plant biomass and quality ratings (including chlorophyll levels) followed an asymptotic behavior with CRF applications for Coreosis `Early Sunrise' and Astilbe `Bridal veil', leveling at ≈1.8 kg·m-3. The rest of the species showed increases in plant growth and quality with CRF rates of 1.8-3.6 kg·m-3, followed by sharp, and significant, reductions at higher CRF rates. Observations of optimum growth and quality at CRF rates 1/2 to 3/4 below commercial recommendations were partially attributed to the use a peat medium, with relatively higher nutrient holding characteristics in relation to the more common pine bark mixes. This observation was confirmed the following season, where plants grown in a 4 pine bark: 1 sand medium (v/v) required higher CRF rates to have similar growth and quality responses to those grown in a 4 peat: 1 bark: 1 sand medium (v/v).
The St. Johns River has been identified by the state of Florida as a priority water body in need of restoration. Best Management Practices were evaluated for potato (Solanum tuberosum L. `Atlantic') production in the Tri-County Agricultural Area to reduce nitrate run-off from about 9,300 ha in production. Objectives of this study were 1) determine the influence of soluble and controlled release fertilizer (CRF) and timing of leaching irrigation on nitrate leaching and 2) compare yield and quality of the potato crop fertilized with either a soluble or controlled release nitrogen fertilizer in a seepage irrigated production system. The experiment was a split-split plot with four replications. Main plots were irrigation events (0, 2, 4, 8, and 12 weeks after planting, (WAP)), nitrogen source and rates included (ammonium nitrate (AN) 224 kg·ha–1 or controlled release fertilizer (CRF) 196 kg·ha–1). About 7.6 cm of water was applied at each irrigation event and surface water runoff collected. CRF decreased NO3-N loading by an average of 35%, 28%, and 32% compared to AN fertilizer during the 2, 8, and 12 WAP irrigation events, respectively, compared to AN. Plants in CRF treatments had significantly higher total and marketable tuber yields (30 and 25 t·ha–1) compared to plants in AN treatments (27 and 23 t·ha–1), respectively. Plants in the CRF treatments also had significantly higher total and marketable yields in 2005 (28 and 23 t·ha–1) compared to plants in AN treatments (25 and 21 t·ha–1), respectively. CRF was an effective alternative to conventional soluble forms of fertilizer maintaining yields and protecting natural resources from nonpoint source pollution.