Weed control is a major challenge confronting growers transitioning to organic vegetable production. Organic standards require that growers manage weeds without synthetic herbicides while maintaining or enhancing soil quality. In 2005, we evaluated the effects of two seedbed preparation methods and six weed management tactics, compatible with organic standards, on soil quality indicators, weed pressure, and yield of edamame soybean [Glycine max (L.) Merrill]. Seedbed preparation was conducted with either a moldboard plow and roto-tiller or a spading machine. Weeds were managed by a) regular hand weeding, b) pre-emergent flaming, c) post-emergent incorporation of 100 g of corn gluten meal/m2, or weekly passes from crop emergence until row closure with d) a spring-tine weeder, e) a rolling cultivator, or f) a between-row flame weeder. Dominant weeds were smooth pigweed [Amaranthus hybridus (L.)], goosegrass [Eleusine indica (L.) Gaertn.], and giant crabgrass [Digitaria sanguinalis (L.) Scop.]. Smooth pigweed dominated in the corn gluten meal and spring-tine weeder treatments; goosegrass and giant crabgrass dominated in the two flamed treatments. Weed pressure was lowest, and crop yield highest, in the hand-weeded control and rolling cultivator treatments. Relative to these, crop yield was severely depressed by weed pressure in other treatments. The labile carbon concentration and enzymatic activity of soils was tested midseason, and at harvest, showed no significant treatment effects. Results suggest that the rolling cultivator offered the best weed control among the tactics tested, without adversely affecting soil quality.
Novel and standard herbicides were applied alone, sequentially, or tank-mixed to determine weed control efficacies and tolerances in 15 species of field-grown herbaceous perennials. Autumn applications provided excellent but short-term broadleaf (BL) and annual grass (AG) weed control. Early spring applications were equally effective and of longer duration. Mid- and late spring treatments provided moderate to poor control of AG and poor control of winter perennial BL. Single applications of prodiamine provided season-long control of AG and of spring germinating BL. Greatest number of weed species were controlled by DCPA. Increased duration occurred with tank-mixes of DCPA + pendlimethalin, DCPA + quinclorac. Quinclorac provided excellent pre/post control of AG and some BL. Crop injury was minimized with directed applications. Isoxaben provided excellent preemergent control of BL. Tank-mixes improved AG control. Treatments applied prior to, or at the same time as mulch applications increased weed control and lessened drought stress. Treatments applied over mulch were less effective, suppressed fewer weed species, were of shortened duration, and increased the likelihood of crop injury.
A study was conducted in southeastern Oklahoma to determine treatments or combinations of treatments that provided the best weed control and crop yield for watermelon. `Allsweet' watermelons were grown with different combinations of mechanical and chemical weed control. Treatments included naptalam, clomazone, naptalam + clomazone, bensulide, naptalam + bensulide, napropamide, trifluralin, dcpa, ethalfluralin, sethoxydim, paraquat, glyphosate, cultivation, cultivation + hoeing, cultivation + paraquat, cultivation + glyphosate, and one treatment with no weed control. Glyphosate and paraquat were applied as wipe-on when weeds were taller than watermelons. The five treatments with greatest yields were (in descending order) cultivation + hoeing, trifluralin, cultivation + paraquat, cultivation, and dcpa. The treatments with lowest yield were the control, paraquat, glyphosate, and naptalam. A visual rating (0–10, 0 is poor, 10 is ideal) was taken about 5 weeks after seeding. Treatments with a visual rating of 6 or more were trifluralin (9.4), cultivation + hoeing (9.3), napropamide (9.3), cultivation + glyphosate (7.5), cultivation + paraquat (6.8), dcpa (6.7), and cultivation (6.5). With the exception of the cultivation + hoeing, all plots were weedy at harvest time. Suppression of selected weeds by a herbicide usually allowed rapid growth of the remaining weeds.
Fourteen herbicides or herbicide combinations, a wood chip mulch, a chipped rubber tire mulch, and a newspaper mulch were evaluated for weed control efficacy and potential phytotoxicity using 12 species of herbaceous perennials under field-growing conditions. Nineteen herbicides or herbicide combinations were similarly evaluated under container-growing conditions using 11 species of herbaceous perennials. The effect of herbicide application time also was monitored through application of herbicides to dormant and actively growing plants. Herbicides and mulch treatments were compared to weeded and nonweeded controls. Herbicide phytotoxicity effects were dependent on the age and species of the herbaceous perennial and herbicide application timing. Herbicide injury was generally greater for newly established plants compared to established plants. Although injury was usually reduced when herbicides were applied to dormant plants, injury was sometimes greater when herbicides were applied in early spring compared to applications made in late spring after complete herbaceous perennial emergence. This effect resulted in injury to young shoots that had emerged before the earliest possible time that herbicides could be applied in early spring. A wood chip mulch provided the most effective weed control and highest quality plants under field growing conditions. Several of the herbicides evaluated demonstrated potential for weed control in both field and container herbaceous perennial production systems and landscape plantings.
) are registered in strawberry and vegetables, but none are effective on nutsedge species, and as a result, growers tend to rely on fumigants for weed control. However, fumigants are found to be more effective for long-term weed control when used in
29 POSTER SESSION 3 Weed Control/Cross-Commodity
The increasing perception by consumers that organic food tastes better and is healthier continues to expand the demand for organically produced crops. The objective of these experiments was to investigate the impact of different weed control systems on yields of watermelon (Citrullus lanatus var. lanatus) varieties grown organically. Six watermelon varieties were transplanted at two locations (Lane and Center Point, Okla.). The six varieties included three seeded varieties (`Early Moonbeam', `Sugar Baby', and `Allsweet') and three seedless varieties (`Triple Crown', `Triple Prize', and `Triple Star'). The weed control system at Lane utilized black plastic mulch on the crop row, while the area between rows was cultivated to control weeds. The no-till organic system at Center Point used a mowed rye and vetch cover crop, hand weeding, and vinegar (5% acetic acid) for weed control. When averaged across watermelon varieties, Lane produced significantly more fruit per plant (4.2 vs. 2.3 fruit/plant), greater marketable yields (16.0 vs. 8.4 kg/plants), and higher average marketable weight per fruit (6.1 vs. 4.0 kg) than at Center Point. When comparing locations, four of six varieties had significantly greater number of fruit per plant and higher marketable yields at Lane than at Center Point. Except for `Early Moonbeam', all other varieties produced significantly heavier fruit at Lane than at Center Point. In contrast, the Center Point location produced a greater percentage of marketable fruit for all varieties except `Allsweet'. Fruit quality (lycopene and °Brix) was as good or greater when harvested from the weedier Center Point location.
Container production has increased rapidly in many parts of the U.S. over the past 15 years. Container production has been the fastest growing sector in the nursery industry and the growth is expected to continue. Weed growth in container-grown nursery stock is a particularly serious problem, because the nutrients, air, and water available are limited to the volume of the container. The extent of damage caused by weeds is often underestimated and effective control is essential. Various researchers have found that as little as one weed in a small (1 gal) pot affects the growth of a crop. However, even if weeds did not reduce growth, a container plant with weeds is a less marketable product than a weed-free product. Managing weeds in a container nursery involves eliminating weeds and preventing their spread in the nursery, and this usually requires chemical controls. However, chemical controls should never be the only management tools implemented. Maximizing cultural and mechanical controls through proper sanitation and hand weeding are two important means to prevent the spread and regeneration of troublesome weeds. Cultural controls include mulching, irrigation methods (subirrigation), and mix type. Nursery growers estimate that they spend $500 to $4000/acre of containers for manual removal of weeds, depending on weed species being removed. Economic losses due to weed infestations have been estimated at approximately $7000/acre. Reduction of this expense with improved weed control methodologies and understanding weed control would have a significant impact on the industry. Problems associated with herbicide use in container production include proper calibration, herbicide runoff concerns from plastic or gravel (especially when chemicals fall between containers) and the need for multiple applications. As with other crops, off-site movement of pesticides through herbicide leaching, runoff, spray drift, and non-uniformity of application are concerns facing nursery growers. This article reviews some current weed control methods, problems associated with these methods, and possible strategies that could be useful for container nursery growers.
Abstract
Broad-spectrum herbicides severly injured container-grown (Cotoneaster divaricata, Rehd. & Wils. and Euonymus fortunei, (Turcz.) Hand-Mazz. cv. Coloratus, because of rapid leaching into the root zone as a result of the porous peat-perlite medium. Injury was eliminated when activated carbon at 0.75 kg/m3 was mixed into the medium. Weed control was achieved by applying a 2.5 cm layer of the medium containing herbicide (but not activated carbon). The most effective herbicides were dichlobenil (0.44 g/m2), dichlobenil (0.44 g/m2) plus trifluralin (0.22 g/m2), or simazine (0.44 g/m2).
During the 2003 season, preemergence herbicide was applied to twelve container grown herbaceous perennials and woody plants and evaluated for weed control, phytotoxicity, and effect on plant growth. The herbicide and rates were: Flumioxazin (Broadstar) 113.5 g (label rate), 227 g and 454 g a.i./A. Herbicides were applied to Buxus microphylla `Winter Gem', Cytisus purgans `Spanish Gold', Festuca ovina glauca `Elijah Blue', Hakonechloa macra `Aureola', Lonicera tatarica `Arnold Red', Pachysandra terminalis `Green Sheen', Hydrangea arborescens `Annabelle', Mahonia aquifolium, Phalaris arundinacea `Picta', Carex buchananii, Cerastium tomentosum, and Achillea millefolium `Red Beauty'. Weed control was excellent at all rates and controlled at least 99% of all weeds. No phytotoxicity symptoms were apparent on Mahonia, Buxus, Cytisus, Festuca, Hakonechloa, Pachysandra or Phlaris. Phytotoxicity resulted on some of the other plants. Carex had smaller plants (dry weights) at all rates. Cerastium had severe phytotoxicty at the 227 g and 454 g rates and moderate stunting at the recommended label rate, 113.5 g. Hydrangea became chlorotic and stunted at the 113.5 g rate and some fatal toxicity ocurred at the 227 g and 454 g rates. Phytotoxicity resulted on Lonicera at all rates and ranged from mild chlorosis in leaf veins (113.5 g rate) to plant death (454 g rate). Achillea at the 113.5 g rate only resulted in stunted plant growth while the 227 g and 454 g rates resulted in severe phytotoxcity and plant death.