Hydrangea popularity and use in the landscape has expanded rapidly in recent years with the addition of remontant varieties. Most cultivars in production belong to the species Hydrangea macrophylla but H. paniculata, H. arborescens, H. serrata, H. aspera, H. heteromalla, H. integrifolia, H. anomala, H. seemanii, and H. quercifolia are also commercially available. In addition to species diversity there is high intra-species variation, particularly in H. macrophylla, which includes mopheads, lacecaps, French, Japanese, dwarf, and variegated varieties. Relatively little is known about the genetic background or combinability of these plants. DNA sequence data, genome size, RAPD, AFLP, and ISSR markers have been used for taxonomic identification and to estimate diversity within the genus. All of these methods have limited usefulness in a large scale breeding program. We recently established microsatellite markers for Hydrangea and evaluated their utility for estimating species diversity and identifying cultivars within H. macrophylla and H. paniculata. We also verified an inter-specific cross between H. macrophylla and H. paniculata using these markers. Future research includes marker assisted breeding, particularly with respect to remontant flowering traits.
Bean rust, caused by Uromyces appendiculatus, is an important disease of common bean (Phaseolus vulgaris L.). The objective was to identify RAPD markers linked to the gene (Ur-6) for specific resistance to rust race 51 using bulked segregant analysis in an F2 segregating population from the common bean cross pinto `Olathe' (resistant to rust) × great northern Nebraska #1 selection 27 (susceptible to rust). A single dominant gene controlling specific resistance to race 51 was hypothesized based on F2 segregation, and then was confirmed in the F3 generation. A good fit to a 3:1 ratio for band presence to band absence for each of three markers was observed in 100 F2 plants. Three RAPD markers were detected in a coupling phase linkage with the Ur-6 gene. Coupling-phase RAPD marker OAB14.600 was the most closely linked to the Ur-6 gene at a distance of 3.5 cM among these markers. No RAPD markers were identified in a repulsion phase linkage with the Ur-6 gene. The RAPD markers linked to the gene for specific rust resistance of Middle American origin detected here, along with other independent rust resistance genes from other germplasm, could be utilized to pyramid multiple genes into a bean cultivar for more durable rust resistance.
Considerable epidemiological evidence exists on the association between consumption of antioxidant-rich vegetables and incidence of chronic diseases, including cancer and cardiovascular disease. Broccoli (Brassica oleracea L. sp. italica) florets are relatively abundant sources of antioxidants, and potentially amenable to genetic manipulation to enhance this vegetable's health-promoting properties. This investigation focuses on the identification of chromosomal segments in the nuclear genome of broccoli associated with antioxidant carotenoid and tocopherol variability. A broccoli F2:3 population consisting of 163 families derived from a cross between two parents (VI-158 and BNC) and previously mapped with 62 polymorphic SSR and SRAP marker loci was evaluated for carotenoid and tocopherol concentration in floret tissue over two growing seasons. Significant differences were observed among F2:3 family means for concentrations of lutein (10-fold difference between the lowest and highest family), beta-carotene 17-fold), alpha-tocopherol (8-fold) and gamma-tocopherol (6-fold). On a concentration basis, beta-carotene, lutein, alpha-tocopherol, and gamma-tocopherol were the most abundant antioxidant forms in broccoli. Heritability estimates of primary phytochemicals ranged from 0.35 to 0.38, 0.40, and 0.44 for beta-carotene, alpha-tocopherol, gamma-tocopherol, and lutein, respectively. Composite interval mapping (CIM) identified two quantitative trait loci (QTL) associated with carotenoid variability on two linkage groups and five QTL associated with tocopherol variability on four linkage groups. The QTL identified in this study have potential for use in marker-assisted crop improvement programs to develop elite germplasm designed to promote health among the consuming public.
The ability to pre-screen apple populations for fruit color at an early seedling stage would be advantageous. In progeny of the cross `Rome Beauty' × `White Angel' red/yellow color variation was found to be highly correlated with the genotype at Idh-2, an isozyme locus that was heterozygous in both parents. We postulate that the red/yellow color variation was produced by a single gene linked to I&-2 and also heterozygous in both parents. This population was also screened with over 400 primers to detect randomly amplified polymorphic (RAPD) markers for fruit color. DNA extraction procedures were developed for bark, and DNA was extracted from bark samples and leaves. Red and yellow fruited individuals were examined in bulk. Several markers have been found that are linked to red color. A high density map is being constructed in this region. These markers are being examined in other crosses segregating for fruit color. The application of these markers will be discussed in relation to the inheritance and manipulation of fruit color.
Five morphological and developmental traits (branching habit, vegetative budbreak, reproductive budbreak, bloom time, and root suckering) were analyzed in a family obtained from the apple (Malus domestica Borkh) cross `Rome Beauty' × `White Angel'. The phenotypic variation in these traits was compared with a selected set of marker loci covering the known genome of each of the parents to locate genes with major effects on the traits. The contrasting branching habits of the two parents appeared to be controlled by at least two loci. One of these, Tb, governed the presence or absence of lateral branches, particularly on the lower half of shoots. The locus was heterozygous in `White Angel' and was mapped to a 5 CM interval on linkage group 6. At least one other locus conditioning spur-type branching appeared to be segregating, but the locus or loci could not be linked to segregating markers. The timing of initial vegetative growth was tightly associated with the chromosomal region in which the Tb gene is located and maybe a pleiotropic effect of this gene. Time of reproductive budbreak correlated with segregation at the isozyme marker, Prx-c, on linkage group 5. Variation in time of bloom and later stages in flower development appeared to be controlled by different genes not linked to Prx-c. The tendency to produce root suckers cosegregated with a marker on `White Angel' linkage group 1, suggesting control by a single locus, Rs. Data from a `Rome Beauty' x `Robusta 5' family provided additional information on the inheritance of these traits.
The genes involved in F1 seedling abnormal development and lethality in inter-gene pool crosses have been designated as Dl1 (MesoAmerican=MA) and Dl2 (Andean=A) (Shii et al., 1980, J. Hered. 71:218–222). The different degrees of leaf crippling (C) in segregating populations of crosses was due to the interaction between the Dl1 or Dl2 loci, growing environment, and the lcr allele (Singh and Molina, 1996, J. Hered., In press). The objective was to identify RAPD markers linked to the genes for crippling (lcr) and seedling lethality (Dl) using the bulked segregation analysis procedure for F2 of MA × A crosses. Crosses were made between C lines, FB 10413-24-2, WA 7807-305, and TY 5578-220 and normal (N) parents and tester stocks for Dl1 and Dl2 genes. The F2 FB 10413-24-2 × Carioca segregated 13 N:3C. F3 families segregated 3N:1C. RAPD marker OPB-10 was linked to Lcr at 31.2 cM. F3 families segregated 1N:3C. RAPD marker OPO16 was linked to Dl1 at 27 cM. The F2 WA-7807-305 × Rio Tibagi segregated 3N:1C. RAPD marker OPS-03 was linked to Lcr at 32.6 cM.
Apple scab, caused by Venturia inaequalis (Cke.) Wint., is the most serious disease of apple trees. Resistance to V. inaequalis, derived from the small-fruited species Malus floribunda 821, is determined by a major dominant gene Vf. Our major objective is to identify RAPD markers linked to the Vf gene. The approach in this paper is based on the introgression of the Vf gene from M. floribunda into commercial cultivars. Almost 200 random sequence decamer-primers have been used to screen a pair of bulked samples and the donor parent M. floribunda clone 821 for markers linked to the Vf gene conferring resistance to apple scab. A single primer has been identified which generated a PCR fragment, OPK16/1300, from the donor parent M. floribunda clone 821 and the scab-resistant selections/cultivars bulk, but not from the scab-susceptible recurrent parent bulk. Co-segregation analysis using a segregating apple progeny and polymorphism analysis of individual scab-resistant Coop selections/cultivars have confirmed that this marker is linked to the scab-resistance gene Vf. OPK16/1300 has since been cloned and sequenced. Sequence-specific primers of 25 oligonucleotides based on the marker have been synthesized and used to screen further M. floribunda clone 821, scab-susceptible apple cultivars, scab-resistant apple cultivars, and scab-resistant Coop selections. The sequence-specific primers have identified polymorphisms of OPK16/1300 based on the presence or absence of a single band.
Controlled pollinations were made between five hemlock (Tsuga) species from eastern North America and Asia, resulting in over 5700 germinating seedlings. A subset of putative hybrid seedlings from each cross was tested for authenticity by various DNA marker systems. The most reliable and useful system for verifying hybrids was amplified fragment-length polymorphism (AFLP) markers. Hybridizations between the eastern North American species, T. canadensis [L.] Carriere and T. caroliniana Engelm., and the Asian species, T. chinensis (Franch.) E. Pritz., were used as a model to test the inheritance, reliability, and ease of use of these markers. Using AFLP markers, we were able to verify 58 hybrids between T. caroliniana and T. chinensis, one hybrid between T. caroliniana and T. canadensis, but could find no definitive hybrids between T. canadensis and T. chinensis. Results using other marker systems, including RAPD, SCAR, ITS, and SSR, are also presented.
Abstract
The following is a brief review of our investigations on problems of germplasm acquisition, analysis, maintenance, evaluation, and use in the Lycopersicon spp. It is based entirely on our published research; hence, only a synopsis will be presented and appropriate citations made to direct readers to full presentation of results and analysis.
Almost 200 random sequence decamer primers were used to screen a pair of bulked samples of apple (Malus ×domestica Borkh.) DNA and that of the donor parent Malus floribunda Sieb. clone 821 for molecular markers linked to the Vf gene conferring resistance to apple scab [Venturia inaequalis (Cke.) Wint.]. Identified was a single primer that generated a polymerase chain-reaction (PCR) fragment, OPAR4/1400, from the donor parent M. floribunda clone 821 and the scab-resistant selections/cultivars bulk, but not from the scab-susceptible recurrent-parent bulk. Cosegregation analysis using a segregating apple progeny and polymorphism analysis of individual scab-resistant selections/cultivars confirmed that this marker was linked to the scab-resistance gene Vf OPAR4/1400 was then cloned and sequenced. Sequence-specific primers of 25 oligonucleotides based on the marker were developed and used to screen further M. floribunda clone 821, scab-susceptible apple cultivars, scab-resistant apple cultivars, and scab-resistant Purdue, Rutgers, and Univ. of Illinois apple breeding program selections. The sequence-specific primers identified polymorphisms of OPAR4/1400 based on the presence or absence of a single band. This molecular marker is at a distance of about 3.6 cM from the Vf gene.