Search Results

You are looking at 71 - 80 of 260 items for :

Clear All

Affluent “peri-urban” populations in some areas have created new markets for small specialized growers. Although intensive growing systems using drip irrigation and fertigation with new varieties can increase yields, there is also a desire to use systems that are viewed as more sustainable. One way to reduce the environmental impact of intensive systems is to use organic mulches that do not require disposal and can improve soil conditions. `Chandler' strawberry (Fragaria ×ananassa Duch.) transplants were set in raised beds on 28 Oct. 1997. All plots received pre-plant P at 73 kg/ha. Treatments were: hay mulch (HY); a commercial, pelleted, recycled paper mulch (PA); polyethylene mulch (PL); or a woven weed-blocking (WB) fabric, with or without dairy manure compost (22% moisture) at 22 t/ha tilled in before bedding. A total of 184 kg/ha N was applied through the irrigation system in weekly applications during the growing season. The first bloom set was killed by cold on 9 Mar. 1998. Yields from the two synthetic mulch systems (PL = 5502 and WB = 4996 kg/ha) were significantly higher than those from the organic mulches (HY = 2824 and PA = 1735 kg/ha). Mean fruit weight was also higher with synthetic (PL = 10.6 and WB = 10.4g) than organic (HY = 9.5 and PA = 9.0 g) mulches. Factors such as increased weed growth in organic mulches and warmer temperatures in synthetic mulches contributed to increased yields from synthetically mulched plots.

Free access

Coal combustion by-products (CCB) are produced nationwide, generating 108 Mg of waste annually. Though varied, the majority of CCB are crystalline alumino-silicate minerals. Both disposal costs of CCB and interest in alternative horticultural/agricultural production systems have increased recently. Field studies assessed the benefit of CCB and organic waste/product mixtures as supplemental soil/growth media for production of hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] sod. Growth media were applied at depths of 2 to 4 cm (200 to 400 m3·ha-1) and vegetatively established by sprigging. Cultural practices typical of commercial methods were employed over 99- or 114-day growth periods. Sod was monitored during these propagation cycles, then harvested, evaluated, and installed offsite in a typical lawn-establishment method. Results showed mixtures of CCB and biosolids as growth media increased yield of biomass, with both media and tissue having greater nutrient content than the control media. Volumetric water content of CCB-containing media significantly exceeded that of control media and soil included with a purchased bermudagrass sod. Once installed, sod grown on CCB-media did not differ in rooting strength from control or purchased sod. When applied as described, physicochemical characteristics of CCB-media are favorable and pose little environmental risk to soil or water resources.

Free access

Measuring intact fruit with a colorimeter could be a quick way to estimate anthocyanin concentration and reduce waste disposal. Five fresh fruit from each of 134 plots were measured with a Minolta tristimulus colorimeter in 1994. Samples were frozen and anthocyanins extracted with acidified ethanol and measured with a spectrophotometer. The hue angle and anthocyanin concentration had r 2 = 0.51. L*, a*, b* and C* were significantly correlated with anthocyanin concentration with r 2 = 0.31, 0.32, 0.42, and 0.34, respectively. In 1995, five fruit from each of 20 plots were measured as before. In 1995, the hue angle and anthocyanin concentration had r 2 = 35. A regression equation with hue angle, b* and a* estimated anthocyanin concentration with R 2 = 0.62. In 1995, the same 20 samples were also measured with a colorimeter immediately after thawing. The hue angle and anthocyanin concentration had r 2 = 0.55. A regression equation with hue angle, b* and L* estimated anthocyanin concentration with R 2 = 0.76. It may be possible to estimate anthocyanin concentration by measuring intact fruit with a colorimeter after freezing and thawing the samples.

Free access

Landfiling and incineration constitute the most commonly used methods of biosolid disposal. To minimize the environmental risk, their chemical and biological characteristics have been the subject of several investigations.

The present research was undertaken to evaluate the agronomic value of municipal solid wastes (MSW) and composted de-inked sludge (CDS) in a field experiment for sod production. Four variables in a split factorial design, were investigated at two sod farms: compost (MSW and CDS), soil (sandy loam and clay loam), application method (surface applied 6cm and incorporated 20cm), and the application rate (50-100 and 150t/ha). Controls consisted of unfertilized and unamended but fertilized plots. Both experimental sites were seeded with kentucky bluegrass.

Preliminary data indicate that the two biosolids promoted the sod growth at the rates applied. However, a better plot cover was observed if composts were rototilled at a depth of 6cm as compared to the conventional treated plots. Measurements of root and foliar weights revealed that the turf growth was enhanced with increasing rates, which is probably caused by additional soil macronutrients showed by the analysis. Seed germination and seedling emergence were not delayed as indicated by the observed increase in the water retention capacity of the soil especially at higher compost rates.

Free access

Increasing disposal problems with polyethylene (PL) mulch and greater availability of compost prompted an investigation into the effects of using compost as a mulch on horizontal raised bed surfaces with living mulches (LMs) on vertical surfaces. Wood chips (WC), sewage sludge-yard trimming (SY) compost, and municipal solid waste (MW) compost were applied at 224 t·ha-1 on bed surfaces. Sod strips of `Jade' (JD) or `Floratam' (FT) St. Augustinegrass (Stenotaphrum secundatum Kuntze) or perennial peanut (Arachis glabrata Benth.) (PP) or seeds of a small, seed-propagated forage peanut (Arachis sp.) (SP) were established on the vertical sides of the raised beds before transplanting bell pepper (Capsicum annuum L.) into the beds. Phytophthora capsici reduced pepper plant stand in PL-mulched plots compared with organic mulch (OM) and LM. Despite the stand reduction, total pepper yields were highest in PL plots and, in the OM plots, decreased in the order SY > MW > WC. Early fruit yields and yield per plant were highest from plants in PL plots followed by SY. Among LMs, plants in SP plots produced highest early yields and FT produced the lowest. Plants in PL plots produced the largest fruit. When the same plots were seeded with winter (butternut) squash (Cucurbita pepo L.), plant stands were higher in MW than WC and SY. Squash yields were similar between PL and OM plots.

Free access

Trichoderma virens (Gliocladium virens) (Miller et al.) von Arx is a soilborne fungus with a high degree of rhizosphere competence that produces a potent herbicidal compound, viridiol, and therefore has potential for development as a bioherbicide. We investigated the possibility of using composted chicken manure (CCM) as a medium for the production and deployment of T. virens. We chose CCM since the safe disposal of chicken manure presents significant logistic problems, and composted manures, as well as serving as an organic source of nitrogen, have been shown to support the activity of other biological control agents. Composted chicken manure supported the growth of T. virens and the rapid production of high concentrations of viridiol, but only when it was supplemented with large quantities of nutrients, including sucrose (16% w/w). Viridiol was not stable when stored in CCM, with a rapid decline in viridiol concentrations observed in T. virens-inoculated CCM cultures. Clearly, a cheaper alternative to sucrose is required as a carbon source for T. virens in CCM or similar media, and effective storage methods would need to be found for a T. virens-based bioherbicide product. Importantly, CCM did not need to be sterilized to support the growth of T. virens and its concomitant production of viridiol, suggesting that on-farm production systems may be feasible. Trichoderma virens-colonized CCM reduced the emergence and seedling growth of redroot pigweed (Amaranthus retroflexus L.) in a greenhouse experiment and dramatically reduced the emergence of a mixed community of broadleaf weeds in the field.

Free access

Composting of municipal solid waste (MSW) has received renewed attention as a result of increasing waste disposal costs and the environmental concerns associated with using landfills. Sixteen MSW composting facilities are currently operating in the United States, with many more in the advanced stages of planning. A targeted end use of the compost is for horticultural crop production. At the present time, quality standards for MSW composts are lacking and need to be established. Elevated heavy metal concentrations in MSW compost have been reported; however, through proper sorting and recycling prior to composting, contamination by heavy metals can be reduced. Guidelines for safe metal concentrations and fecal pathogens in compost, based on sewage sludge research, are presented. The compost has been shown to be useful in horticultural crop production by improving soil physical properties, such as lowering bulk density and increasing water-holding capacity. The compost can supply essential nutrients to a limited extent; however, supplemental fertilizer, particularly N, is usually required. The compost has been used successfully as a sphagnum peat substitute for container media and as a seedbed for turf production. High soluble salts and B, often leading to phytotoxicity, are problems associated with the use of MSW compost. The primary limiting factor for the general use of MSW compost in horticultural crop production at present is the lack of consistent, high-quality compost.

Full access

In 1988, the Florida Legislature passed the Solid Waste Management Act that affected the solid waste disposal practices of every county in the state. With legislation directly affecting the industry, organic recyclers and Florida Department of Environmental Protection (FDEP) regulators recognized a need to establish a professional organization that could serve as a unified industry voice, and foster high standards and ethics in the business of recycling and reuse of organic materials. In December 1994, a meeting was held to discuss the formulation of a Florida organic recycling association which became known as the Florida Organics Recyclers Association (FORA). FORA's first major contribution to the industry was the development of a recycling best management practice manual for yard trash in 1996. The second major project undertaken by FORA was a food waste diversion project which sought to promote an increase in food waste recovery and reuse. In Spring 1999, FORA became the organic division of Recycling Florida Today (RFT) further unifying recycling efforts within the State of Florida. In an attempt to address mounting concerns regarding industry marketing and promotional needs, RFT/FORA developed an organic recycling facility directory for the State of Florida in Spring 2000. Most recently RFT/FORA developed an organic recycling facility operator training course outline to assist the FDEP in identifying industry training needs. From its modest beginnings in 1994, to future joint programming efforts with the University of Florida's Florida Organic Recycling Center for Excellence (FORCE), RFT/FORA continues to emerge as a viable conduit of educational information for public and private agencies relative to organic recycling in Florida.

Full access

Liatris is an ornamental plant cultivated as a garden perennial for more than 70 years. Since the early 1970s, Liatris spicata has gained importance as a cut flower because of its long-lasting flowering and its peculiar downward flowering succession. This species is usually cultivated in beds both outdoors and in greenhouses. However, in order to improve yield and quality production, some research has been carried out on soilless cultivation. In particular, floating systems seem to provide the best performances, although only different nutrient solutions or their concentrations have been studied. In this research, in addition to two different concentrations of Hoagland solution [full-strength (H) and a half-strength (1/2H)], three corm circumferences (8/10, 10/12, and 12+) and three plant densities (36, 48, and 60 plants/m2) were also evaluated. The full-strength solution gave the best performance from both qualitative and quantitative standpoints. This nutrient solution also showed, at the end of the experiment, very high residual nitrate-N, which could induce environmental pollution during disposal. Furthermore, the management of the solution appeared more difficult and time-consuming. All these aspects should be taken into account by growers in making choices. Corm size also affected production. Increasing circumference from 8/10 to 12+ increased marketable stems per plant and their quality traits, but, because of the highest mortality of plants observed with the bigger corms, yield per square meter did not increase over corm size of 10/12. Finally, rising plant density from 36–60 plants/m2, the biomass of the single plant decreased. However, it resulted also in the enhancement of sellable production per square meter.

Free access

Citrus trees in an experimental planting responded well to high application rates of reclaimed water. Irrigation treatments included annual applications of 400 mm of well water and 400, 1250, and 2500 mm of reclaimed water. The effects of these irrigation treatments on two citrus cultivars (`Hamlin' orange and `Orlando' tangelo) combined with four rootstocks were compared. Growth and fruit production were better at the higher irrigation rates. The concentration of soluble solids in juice was diluted at the highest irrigation rate, but total soluble solids per hectare increased due to the greater fruit production. Average soluble solids/ha production was >15% higher at the 2500-mm rate than the 400-mm reclaimed water rate. While fruit soluble solids were usually lowered by higher irrigation, the reduction in fruit soluble solids observed on three of the rootstocks did not occur in trees on Carrizo citrange. Trees on Cleopatra mandarin grew similarly at the different irrigation rates, but canopy volume of trees on Swingle citrumelo was significantly smaller at the 400 mm rate than at the 2500 mm rate. Fruit peel color score was lower but juice color score was higher at the highest irrigation rate. Weed pressure increased with increasing irrigation rate, but was controllable. Both juice and fruit soluble solids were higher on Swingle citrumelo and lower on Cleopatra mandarin rootstock. Total soluble solids/ha, solids/acid ratio, and juice color were higher on Swingle rootstock. Reclaimed water, once believed to be a disposal problem in Florida, can be an acceptable source of irrigation water for citrus on well drained soils at rates up to twice the annual rainfall.

Free access