Abstract
Little research has been conducted to determine the influence of fertilizer sources and rates on zoysiagrass (Zoysia japonica Steud.) establishment. Our objectives were to determine the influence of slow-release N sources, water-soluble N from urea, and N, P, and K combinations on rate of zoysiagrass establishment. Prior to field planting of zoysiagrass plugs, N rates of 98, 196, and 392 kg·ha-1 from ureaformaldehyde (UF, 38N-0P-0K), isobutylidine diurea (IBDU, 31N-0P-0K, and a composted sewage sludge (1.0N-0.9P-0.2K) were incorporated into a soil with existing high P (193 kg·ha-1) and intermediate K levels (86 kg·ha-1). In a separate study nitrogen from urea (46N-0P-0K, 195 kg·ha-1), P from treble superphosphate (0N-19P-0K, 126 kg·ha-1) and K from muriate of potash (0N-0P-32K, 103 kg·ha-1) also were incorporated before planting. Five months after planting, none of the slow-release N sources or N-P-K combinations had enhanced coverage of the zoysiagrass. No additional fertilizer was applied in the 2nd year. Although statistically significant differences were found among treatments by the end of the 2nd growing season, the actual increases in zoysiagrass coverage provided by the fertilizers were no greater than 5% more than the unfertilized zoysiagrass. In a 3rd study, N (49 kg·ha-1) from urea, applied as a topdressing either once, four, or seven times annually, resulted in a negative linear [coverage = 63.8 − 0.02 (kg N/ha per year), r 2 = 0.57] response in zoysiagrass coverage the initial year, but not in the 2nd year. Nitrogen from urea (49 kg·ha-1) applied bimonthly or monthly the 2nd year had a greater beneficial effect on zoysiagrass growth than topdressing or preplant incorporation of N the initial year.
linear gradient irrigation HortScience 34 893 896 Qian, Y.L. Engelke, M.C. Foster, M.J.V. 2000 Salinity effects on zoysiagrass cultivars and experimental lines Crop Sci. 40 488 492 Richardson, M.D. Boyd, J.W. 2001 Establishing Zoysia japonica from
are 11 identified Zoysia species, five of which are distributed in China ( Z. japonica , Z. matrella , Z. tenuifolia , Z. sinica , and Z. macrostachya ) ( Guo et al., 2014 ). In tropical southern China, soil acidification is an acute problem in
; Engelke and Anderson, 2003 ). Most commonly used zoysiagrasses in these zones include three species of Zoysia matrella [(L.) Merr.], Zoysia japonica (Steud.), and Zoysia pacifica (Willd. ex Thiele) ( Engelke and Anderson, 2003 ). Zoysiagrass has a
( Zoysia japonica Steud.). Furthermore, ‘Mirage’ bermudagrass [ Cynodon dactylon var. dactylon (L.) Pers.] reached 100% coverage 24 d earlier than ‘Zenith’ zoysiagrass ( Zoysia japonica Steud.) ( Patton et al., 2004 ). The slow establishment rate is
this study. Although these species are widely distributed in Japan, the photosynthetic pathway of the two Sedum species is not well understood. Zoysia matrella , a warm-season turfgrass and C 4 plant, is one of the most common green roof plants in
.) Pers.; Wang et al., 2013 ], zoysiagrass ( Zoysia japonica Steud.; Li et al., 2009 ), and centipedegrass [ Eremochloa ophiuroides (Munro) Hack; Zheng et al., 2013 ]. However, there have been no similar publications on carpetgrass. This study is the
herbicides on bermudagrass ( Cynodon spp.) sprig establishment Weed Sci. 33 253 257 Boyd, J.W. Baird, J.H. 1997 Herbicide effects on sprig establishment of Zoysia japonica CV. El Toro and Cynodon dactylon × C. transvaalensis cv. Midlawn Intl. Turf. Soc
artificial shade conditions. Materials and Methods Experiments were conducted in 2006 and 2007 at the Texas Tech University Horticulture Greenhouse in Lubbock, TX. Plugs measuring 2.5 cm 2 of six zoysiagrass genotypes [ Zoysia japonica Steud. genotype
oxadiazon effectively controlled weeds and increased shoot dry weights and bulb yields in garlic ( Qasem, 1996 ) and shoot fresh and dry weight yields in marjoram ( Qasem and Foy, 2006 ). In zoysiagrass ( Zoysia japonica ), applications of oxadiazon enhanced