Search Results

You are looking at 61 - 70 of 222 items for :

  • Capsicum annuum x
  • HortTechnology x
Clear All

Seedless cucumber (Cucumis sativus) is a popular and high-value crop found in many local food markets. Worldwide, it is the third most important high tunnel crop after tomato (Solanum lycopersicum) and pepper (Capsicum annuum). One challenge of growing seedless cucumbers in high tunnels is low soil temperatures in the early season that suppress plant growth even when air temperatures would be adequate. Grafting cucumbers to enhance crop tolerance to suboptimal temperature stresses has been widely used in Asian countries. However, little information is available in the United States about graft compatibility, cold hardiness, and seasonal extension potential of growing grafted seedless cucumbers in high tunnels. In this study, we tested the effects of grafting with two winter squash (Cucurbita moschata) rootstocks (‘Titan’ and ‘Marvel’) on vegetative growth and yield of three seedless cucumbers (‘Excelsior’ pickling cucumber, ‘Socrates’ Beit Alpha cucumber, and ‘Taurus’ long-type cucumber) in the spring seasons of 2016 and 2017 in high tunnels located in U.S. Department of Agriculture (USDA) hardiness zone 6. Nongrafted plants were included as controls. All grafted plants survived the suboptimal temperature stress during transplant period, whereas 59% of nongrafted plants died in the 2016 season. Irrespective of rootstock and cucumber cultivar, vine growth rates of nongrafted cucumbers in April of both years were lower than those of the grafted crops. Cucumber cultivars Excelsior and Taurus grafted onto Marvel winter squash rootstock had higher yields in May 2016 compared with the yields of the nongrafted plants in the same month. The enhanced early-season yields of grafted plants were observed on cucumber cultivars Excelsior and Socrates in 2017 regardless of rootstocks. Grafting also increased the entire season’s yields of the three cucumber cultivars in 2017, but not in 2016. More comprehensive evaluations about cold tolerances of newly released cucumber rootstocks are needed. Further studies are also warranted to improve our understanding of effects of rootstock and scion interactions on cucumber growth and yield in high tunnel production.

Full access

, including Dolmi ( Kitta et al., 2014 ) and yellow lantern chili ( Capsicum chinense ; Jaimez and Rada, 2006 ) concluded that the pepper plants actually compensated for the shading effects and produced fruit that was not significantly different from fruit

Full access

Southern U.S. states such as Texas experience high temperatures and intense solar radiation during the summer production season. Use of shadecloth is common in Spain and other Mediterranean countries and is becoming popular with homeowners or small-acreage farmers in Texas. Little information is available on the applicability of using shadecloth on tomato (Solanum lycopersicum) and chili pepper (Capsicum annuum) in the warm climate of Texas. The effects of two shade nets differing in shading intensity on growth, chlorophyll fluorescence, and photosynthesis of ‘Celebrity’ tomato and ‘Sweet Banana’ chili pepper was investigated from May to Aug. 2014. Plants were grown in 50% shade, 70% shade, or full sun. Compared with the unshaded control, tomato grown in 50% shade had similar yield and shoot fresh and dry weight and less photochemical stress. The 50% shade reduced number and weight of unmarketable tomato fruit. Similar results were obtained with chili pepper except for lower numbers of marketable fruit. The 70% shade significantly reduced yield parameters of both tomato and chili pepper. Both 50% and 70% shadecloth reduced leaf temperatures of tomato and chili pepper with variable results in June and July. Growth index [(height + width 1 + width 2) ÷ 3] of tomato and chili pepper was the highest with 50% shade, the lowest with full sun, and intermediate with 70% shade. The maximum net photosynthetic rates (Pn) of tomato determined from a Pn to light response curve supported the results on growth and yield. However, the maximum Pn of chili pepper was higher in full sun treatment compared with 50% or 70% shade. The latter two were almost identical. This one growing season study indicated that shading at 50% benefits tomato and chili pepper production in west Texas by reducing heat stress; however, a shading percentage below 50% may be better.

Full access

In 1999, West Virginia University (WVU) established an organic farming systems project with a market garden section consisting of 32 plots measuring 16 × 25 ft arranged in a completely randomized design. Sixteen of these plots were managed as high-input and 16 as low-input plots. High-input plots received 10 tons/acre per year of dairy manure and a rye-vetch (Secale cereale and Vicia villosa) cover crop during each winter season since the inception of the experiment in 1999. Fertility in low-input plots was managed solely with an annual rye-vetch cover crop while both treatments also received 5 tons/acre of mixed species hay used as mulch in 2 of every 4 years. A 4-year rotation of crops, green bean (Phaseolus vulgaris), zucchini (Cucurbita pepo), tomato (Solanum lycopersicum), green pepper (Capsicum annuum), and lettuce (Lactuca sativa) in the Fabaceae, Cucurbitaceae, Solanaceae, and Asteraceae families, was established in 1999 and has been maintained ever since. Soil organic matter (SOM) in the upper 6 inches of the soil profile (4.4% in 1999) has remained unchanged in low-input plots at 5.2% in 2004 and 5.4% in 2014, the year following transition and most recent data collection, respectively. During this same time period, significant increases in SOM from 6.4% in 2004 to 8.7% in 2014 were observed in high-input plots. Bulk density was lower in high-input plots than low-input plots in 2014. Despite these improvements in soil quality, high-input plots showed very high levels of phosphorus and potassium. Over the duration of the experiment, yearly manure application increased yields by 22% in all crops combined; however, individual crops responded quite differently. The yield was 9%, 25%, 24%, and 24% higher in high-input plots than in low-input plots for tomato, pepper, zucchini, and green bean, respectively. Manure application in addition to green manures and hay mulch incorporation was found to result in significant economic returns.

Full access

Clove oil derived from the clove plant [Syzygium aromaticum (=Eugenia caryophyllata)] is active against various soil-borne plant pathogens and therefore has potential for use as a bio-based pesticide. A clove oil formulation previously found to be toxic to the southern root-knot nematode (Meloidogyne incognita) in laboratory assays was investigated in greenhouse studies for nematode suppression and phytotoxicity on vegetable crops. Phytotoxicity studies were conducted with 0.1%, 0.2%, and 0.3% clove oil applied to soil 0, 2, 5, and 7 days before transplant of cucumber (Cucumis sativus), muskmelon (Cucumis melo), pepper (Capsicum annuum), and tomato (Solanum lycopersicum) seedlings. Tomato seedlings were the most sensitive to clove oil. The 0.2% and 0.3% clove oil concentrations applied as drenches at transplant (0 day) were the most phytotoxic to seedlings of all the tested vegetable species, with only 0% to 50% seedling survival. Most of the clove oil concentrations applied as drenches at transplant decreased shoot heights and fresh shoot weights of all seedlings. Some applications of clove oil at 0.2% and 0.3%, applied 2, 5, or 7 days before transplant also significantly reduced shoot growth, especially of pepper and tomato. Greenhouse experiments evaluating suppression of nematode populations on cucumber were conducted with 0.10%, 0.15%, and 0.20% clove oil applied 7 days before transplant. Overall, plants inoculated with nematodes tended to have smaller shoots and heavier roots than plants without nematodes. Effects of clove oil treatments on nematode population densities were inconsistent between the two trials. In Trial 1, 0.10% and 0.15% clove oil decreased population densities compared with the carrier control. In Trial 2, nematode population densities were lowest in the water and carrier control treatments. The results indicate that, with the tested clove oil formulation and application times, southern root-knot nematode populations would not be consistently reduced with clove oil concentrations that were not phytotoxic to one or more of the tested vegetable crops.

Full access

With the continuing 20% growth rate in the organic industry, organic vegetable crop production has increased to 98,525 acres in the United States. The requirement for certified organic vegetable producers to implement a soil-building plan has led to the development of soil fertility systems based on combinations of organic fertilizers and cover crops. To determine optimal soil fertility combinations, conventional and organic bell pepper (Capsicum annuum) production was evaluated from 2001 to 2003 in Iowa, comparing combinations of two synthetic fertilizers and three compost-based organic fertilizers, and a cover crop treatment of hairy vetch (Vicia villosa) and rye (Secale cereale) in a strip-tilled or fully incorporated cover crop system. Organic pepper growth and yields equaled or surpassed conventional production when nitrogen (N) was provided at 56 or 112 kg·ha−1 from compost-based organic fertilizer. Soil analysis revealed higher N in plots where cover crops were tilled compared with strip-tilled plots, leading to recommendations for sidedressing N in strip-tilled organic pepper production. Increased incidence of disease was also detected in strip-tilled plots. Postharvest weight loss after 6 weeks in storage was similar in organic and conventional peppers. The addition of calcium and sulfur products in conventional or organic fertilizer regimes did not increase pepper production or postharvest storage potential. Despite application challenges, cover crops will remain as critical components of the organic farm plan for their soil-building benefits, but supplementation with approved N sources may be required for optimal pepper production. Organic growers should conduct their own tests of organic-compliant soil amendments to determine cost effectiveness and value for their site before large-scale application.

Full access
Author:

Pathogen control is of prime importance in the retail food industry. The Howard E. Butt Grocery Co. (HEB) instituted a testing program for Escherichia coli in 1997. Although not all strains of E. coli are harmful; it was chosen as a test organism because of the ease of assay and it is indicative of the potential presence of other pathogens. By the second quarter of 2000, HEB had reduced percentage of samples with E. coli from 15% to less than 5%. This was done with testing and producer educational programs to improve the safety of produce sold by HEB. Food suppliers to HEB must meet product safety and quality standards. HEB won the International Association for Food Protection's Black Pearl award in 1994, and was the first retailer to integrate hazard analysis and critical control points (HACCP) into their seafood markets. HEB's sampling program helped reduce E. coli levels in sprouts [alfalfa (Medicago sativa), bean (Phaseolus aureus), and radish (Raphanus sativus) sprouts], white mushrooms (Agaricus bisporus), and limes [persian lime (Citrus aurantifolia) and key lime (C. latifolia)], as well as in the prepared product, pico de gallo [a mixture of chopped tomato (Lycopersicon esculentum), pepper (Capsicum annuum), onion (Allium sativa), and cilantro (Coriandrum sativium)]. Incidence of E. coli in lettuce (Lactuca sativa) was related to the season of the year. E. coli levels varied with the crop, but generally better growers had lower E. coli regardless of crop. Country of origin has some effect on the incidence of E. coli, while organic vs. conventional production had little, if any, influence.

Full access

software, SAS (version 9.2; SAS Institute, Cary, NC). For RAPD analysis, one accession of Capsicum annuum (‘Camelot’) and six accessions of C. chinense (‘Bhut Jolokia’, ‘Trinidad Scorpion’, ‘Trinidad 7-pot Jonah’, and ‘Douglah Trinidad Chocolate’) were

Full access

Frank, J.R. Schwartz P.H. Jr Bourke, J.B. 1988 Insect and weed interactions on bell peppers ( Capsicum annuum ) Weed Technol. 2 423 428 Geary, B. Ransom, C. Brown, B. Atkinson, D. Hafez, S. 2008 Weeds, disease, and nematode management in onions with

Free access

Considerable morphological diversity exists within pepper ( Capsicum annuum ) germplasm for fruit and leaf shapes, size, color, and plant habit. Ornamental pepper fruit range from small piquin-size fruit to full-size chiles with immature color

Open Access