Search Results

You are looking at 61 - 70 of 402 items for :

  • "soil fertility" x
Clear All
Full access

James J. Ferguson, Elizabeth Lamb and Mickie Swisher

With funding to increase support for organic farming research at land grant universities, organic growers have collaborated with faculty and administrators to develop an undergraduate, interdisciplinary minor at the University of Florida. Required introductory courses focus on general concepts of organic and sustainable farming, alternative cropping systems, production programs, handling, and marketing issues. An advanced horticulture course requires intensive examination of certification procedures, farm plans, soil fertility, and crop management, all of which are integrated into a required field project. Extension faculty have also fostered development of this new curriculum by coordinating regional workshops and field days in collaboration with organic growers and by developing educational materials on organic certification and related issues.

Free access

Ricky D. Kemery and Michael N. Dana

Fir seedling transplant containers were used as an alternative to conventional plug containers (72 per tray) in a system to grow seedlings of native prairie perennials and install them on a highway site in central Indiana. Plants grown in deep-tube fir-seedling containers exhibited greater fresh and dry weights than conventional plug transplants with no root circling. Results from survival data indicate that plants grown in fir seedling containers offer better chances of success on highway sites with low soil fertility and poor soil structure. A chronology of installation methods, tools, and mechanization possibilities is presented.

Free access

Joseph R. Heckman, Ray Samulis and Peter Nitzsche

1 Extension Specialist in Soil Fertility; to whom reprint requests should be addressed. E-mail address: heckman@aesop.rutgers.edu 2 County Agricultural Agent. The research reported in this publication was supported by the New Jersey

Free access

Bert T. Swanson, James B. Calkins, Daniel G. Krueger and Theresa L. Stockdale

Media fertility is a critical factor in the successful production of container grown plants. Fertility treatments including fertigation and slow-release fertilizers (topdressed and incorporated) were compared. Fertility treatments were studied over a two-year period on a variety of deciduous and evergreen plant materials. Plant growth was quantified based on height, volume, branching, and quality. Soil fertility levels based on leachates were followed during the study. Nutrient release for incorporated fertilizers tested was variable although less so than when the same fertilizers were topdressed. Fertility treatment effects were species-dependent. Several incorporated, slow-release fertilizers, especially those high in nitrogen (Sierra 17-6-10, Sierra High N 24-4-6, Woodace Briquettes 23-2-0, Woodace 21-4-10), show promise for use in two-year container production systems.

Full access

Curtis H. Petzoldt, Stephen Reiners and Michael P. Hoffmann

The document Cornell Integrated Crop and Pest Management Guidelines for Commercial Vegetable Production was revised in 1999 to become inclusive and integrative of all aspects of crop and pest management. As an adjunct to the printed publication, additional information was presented in tables at an Internet web site. Links on the web site were made to other sites with more detailed information on specific topics, such as photographs of pests and diagnostic information, soil fertility testing, cover crops, environmental impact of pesticides, pesticide labels, and images, sources, and life cycles of beneficial insects. The revision and web site have proven to be popular with cooperative extension staff and the vegetable industry in New York.

Free access

A.M. Clements and L.A. Weston

Fall cole crops of exceptional quality and high market value are produced in Kentucky. Tobacco is an integral part of agriculture in the southeastern states and production of fall cole crops following tobacco may increase diversification and Potential profits. A float system was utilized for transplant production. Field plots were established with broccoli and cabbage grown conventionally, planted into killed sudex cover, cultivated tobacco stubble and directly into tobacco stubble. Data were collected on soil fertility, insect and weed populations, crop quality and yield. Periodically, foliar samples were analyzed for nitrate, total nitrogen, phosphorus, potassium and calcium content. Fall cole crops grown conventionally or in killed sudex cover produced comparable results and head size. Insect pressures were reduced in killed sudex covers. Total yield and quality were reduced when seedlings where planted directly into tobacco stubble.

Free access

Won Bae Kim, Kwan Soon Choi, Young Hyun Om and Hak Tae Lim

In an attempt to obtain the basic data for the development of Hanabusaya asiatica as horticultural plants, studies were conducted on the habitat environment, ecological characteristics, various treatments for breaking seed dormancy, and morphological and flowering characteristics of H. asiatica at different growth stages. Hanabusaya asiatica was distributed around areas of 850–1400 m above sea level with an inclination of 5–43°. The vegetation structure of H. asiatica was represented in groups as Quercus mongolica and H. asiatica. In a subgroup, Symplocos chinensis v. leucocarpa for. pilosa, Magnolia sieboldii, and Acer mono were included. Indication species of Quercus mongolica and H. asiatica were Quercus mongolica (B1 layer), Tilia amurensis (B2 layer), Rhododendron schlippenbachii (S layer), Ainsliaea acerifolia v. subapoda, Athyrium nipponicum, Spuriopimpinella brachycarpa, and Carex siderostica (K layer). Soil pH was about 5.4, and soil fertility was relatively in a good condition. The optimum conditions for seed germination was at 25Y.

Free access

Sam Aslan, Sam Cobb, Jose L. Aguiar and Aref A. Abdul-Baki

Approximately 90% of total date production in the U.S. is localized in the Coachella Valley, southwest California. The remainder is in the bordering Imperial Valley, Calif., and Yuma, Ariz. The date trees (Phoenix dactylifera L.) occupy 2282 ha, have an annual yield of 24,000 tons, and a product value of $62 million. Major varieties include `Deglet Noor', `Khadrawl', `Zahide', and `Majhool'. Although climatic requirements for date production prevail in the Valley, major problems related to soil and water have adverse effects on yield and fruit quality. These include water and soil salinity, high water table, high soil compaction and stratification, and low fertility. Slip plowing has been a recommended practice for decompacting the soil. However, soils get recompacted by machinery used in cultural operations. We recently introduced planting cover crops in a no-till system to improve soil fertility, reduce compaction, and improve drainage.

Free access

Felix Ponder Jr., James E. Jones and Joan Haines

Annual applications of N, P, and K fertilizers were broadcast for 4 years around black walnut trees (Juglans nigra L.) in an upland plantation to determine their effect on nut production and foliar nutrient levels. Fertilization significantly (P = 0.05) increased nut production, treatments containing P with N and/or K being most effective. Doubling the rate of application did not produce a corresponding yield in nuts. Increases in leaf concentrations of N, P, and K were associated with increasing treatment levels of these elements. Levels of all elements tested, except P, were above deficiency levels. The modest gain in production suggests that soil fertility was not a major factor limiting nut production for trees in this study.

Free access

Christopher Worden, George Elliott, Bernard Bible, Karl Guillard and Thomas Morris

A composting facility in New Milford, Conn. (NMF), utilizes food-processing residuals, including spent tea leaves, coffee grounds, cocoa shell and cleanings, wastewater treatment sludge from a food ingredients manufacturing plant, and past-expiration processed vegetable products. Materials are composted in aerated, frequently turned windrows under cover. The range of inputs, combined with time constraints on the composting process, has resulted in a variable, immature compost product with a high rate of microbial activity. Users have expressed concern about potential phytotoxicity or nutrient immobilization from using NMF compost. Therefore, research was conducted to determine the influence of cured and uncured NMF compost amendments on potentially sensitive crops with high nutrient requirements. Arugula (Eruca vesicaria) and green bibb lettuce (Lactuca sativa) were grown on two Connecticut organic farm research sites in 1998 and 1999. Both sites have soils classified as coarse loamy over sandy or sandy-skeletal, mixed, mesic, typic, Dystraudepts. Farms differed in the length of time under organic farm management. One farm has been an organic farm since 1988 and consequently has high soil fertility, while the other was a first-year organic farm in 1998, and had relatively low soil fertility. Three amendment types were applied: cured compost, uncured compost, and organic fertilizer (5N-3P2O5-4K2O). Amendment application rates were estimated to provide a comparable range of plant-available nutrients for the amendments and a control without fertilizer. Compost application rates were 3.4, 6.8, 20.2, 35.8, and 71.7 Mg·ha-1 (dry-weight basis) in 1998 and 11.2, 22.4, 44.8, and 89.6 Mg·ha-1 (dry-weight basis) in 1999. Organic fertilizer application rates were 1.34, 2.68, 5.36, 10.72, and 21.44 Mg·ha-1 in 1998 and 1.34, 2.68, 5.38, and 10.72 Mg·ha-1 in 1999. Soil organic matter and nutrients increased with amendment application rate at both locations. Crop yields increased with amendment rate at the new, lower-fertility farm, but yields did not respond to amendments at the older, higher-fertility farm. Yield differences were minor between the uncured and cured compost treatments at both locations. This indicates that either cured or uncured NMF food-processing residual compost can be successfully used as an organic soil amendment for salad green production.