Search Results

You are looking at 61 - 70 of 751 items for :

  • "evapotranspiration" x
Clear All
Free access

J. Norrie, M.E.D. Graham and A. Gosselin

The use of potential evapotranspiration (PET) estimates to identify irrigation timing for greenhouse tomatoes (Lycopersicon esculentum Mill.) grown in peat-based substrate was evaluated for a spring and fall crop. PET (using the Penman equation) was calculated from leaf, wet and dry bulb temperatures, and incident and reflected photosynthetic photon flux. Substrate matric potential (SMP) was monitored continuously using electronic tensiometers. Two irrigation starting setpoints (-4.5 and -6.5 kPa SMP) and two nutrient solution electrical conductivity (EC) treatments (1.5 and 3.0 dS·m-1) were factorially combined in a completely randomized design. Irrigation frequency was greater in treatments irrigated at -4.5 than at -6.5 kPa. The integral of calculated PET values was correlated with SMP for both experiments. Accumulated PET values were higher at the start of irrigation in the -6.5-kPa treatments for spring and fall crops. Nutrient solution EC did not influence irrigation frequency. Leaf pressure potential (LPP) was correlated to PET-predicted LPP (r 2 > 0.56) in plants subjected to high EC, low (-6.5 kPa) matric potential setpoint, or both treatments. PET and electronic tensiometer technology can be used jointly to improve irrigation management for tomatoes grown in peat-based substrates by more accurately responding to crop needs for water and nutrients.

Free access

D.A. Devitt, R.L. Morris and D.S. Neuman

A 2-year study was conducted to quantify the actual evapotranspiration (ETa) of three woody ornamental trees placed under three different leaching fractions (LFs). Argentine mesquite (Prosopis alba Grisebach), desert willow [Chilopsis linearis (Cav.) Sweet var. linearis], and southern live oak (Quercus virginiana Mill.) (nursery seedling selection) were planted as 3.8-, 18.9-, or 56.8-liter container nursery stock outdoors in 190-liter plastic lysimeters in which weekly hydrologic balances were maintained. Weekly storage changes were measured with a portable hoist-load cell apparatus. Irrigations were applied to maintain LFs of +0.25, 0.00, or -0.25 (theoretical) based on the equation irrigation (I) = ETa/(1 - LF). Tree height, trunk diameter, canopy volume, leaf area index, total leaf area (oak only) and dry weight were monitored during the experiment or measured at final harvest. Average yearly ETa was significantly influenced by planting size (oak and willow, P ≤ 0.001) and leaching fraction imposed (P ≤ 0.001). Multiple regressions accounting for the variability in average yearly ETa were comprised of different growth and water management variables depending on the species. LF, trunk diameter, and canopy volume accounted for 92% (P ≤ 0.001) of the variability in the average yearly ETa of oak. Monthly ETa data were also evaluated, with multiple regressions based on data from nonwater-deficit trees, such that LF could be ignored. In the case of desert willow, monthly potential ET and trunk diameter accounted for 88% (P ≤ 0.001) of the variability in the monthly ETa. Results suggest that irrigators could apply water to arid urban landscapes more efficiently if irrigations were scheduled based on such information.

Free access

D. Joseph Eakes, Robert D. Wright and John R. Seiler

The influence of K nutrition (25, 75, 150, 300, 450, and 600 mg K/liter) and moisture stress conditioning (MSC) (exposing plants to four sublethal dry-down cycles) on leaf water relations, evapotranspiration, growth, and nutrient content was determined for salvia (Salvia splendens F. Sellow `Bonfire'). Potassium concentration and MSC had an interactive influence on osmotic potential at full (π100) and zero (π0) turgor. Differences in osmotic potential between MSC and non-MSC plants for π100 and π0 increased with increasing K concentration. Increasing K concentration and MSC resulted in active osmotic adjustment and, consequently, increased cellular turgor potentials. Foliar K content increased with increasing K concentration and MSC. High K concentrations and MSC both reduced plant evapotranspiration on a per-plant and per-unit-leaf-area basis. Greatest shoot dry weight occurred for plants grown with 300 mg K/liter and non-MSC. Total leaf area increased with increasing K concentration, but MSC had little effect.

Full access

Geno A. Picchioni, Jagtar Singh, John G. Mexal and Ryan M. Goss

Undergraduate students generally have difficulty understanding plant water use in nursery conditions. A simple and reliable exercise to quantify evapotranspiration (ET) of containerized nursery plants is missing in the literature and could improve

Free access

Craig A. Storlie and Paul Eck

Inexpensive weighing lysimeters ($1475/unit) were constructed for measuring evapotranspiration of young highbush blueberries (Vaccinium corymbosum L.). The use of a single load cell and other design characteristics decreased lysimeter measurement accuracy but minimized lysimeter construction costs. Measurement error was within ±3%. Crop coefficient (CC) curves for 5- and 6-year-old `Bluecrop' highbush blueberry plants in their third and fourth year of production were generated using reference evapotranspiration and crop water use data from the 1991 and 1992 growing seasons. The CC increased during leaf expansion and flowering in the spring to its maximum value of about 0.19 in 1991 and 0.27 in 1992 and remained near these values until leaves began senescing in the fall. Water use on sunny days during June, July, and August ranged from (liters/bush each day) 3.5 to 4.0 in 1991 and 4.0 to 4.5 in 1992. During the second year of the study, plants had an average height of 0.9 m, an average diameter of 0.9 m, and covered 18% of the total cultivated area. The maximum calculated CC was equal to 1.5 times the measured canopy cover percentage.

Full access

Jeff Million, Tom Yeager and Claudia Larsen

mechanical processes such as computer-controlled tensiometer-triggered irrigation, is based on the effect that evapotranspiration (ET) has in lowering substrate moisture levels. Because information is typically derived from sampling a small fraction of all

Open access

Jeff B. Million and Thomas H. Yeager

evapotranspiration (ET) as well as accounting for rain that may reduce the irrigation requirement. An irrigation scheduling strategy that considers these variables should provide an opportunity for conserving water while maintaining profitable plant growth and

Full access

Brent Rowell and Mar Lar Soe

inner stationary disc and outer rotating disc used to determine water requirements per 100 ft 2 (9.29 m 2 ) based on average evapotranspiration (ET), growth stage, and crop coefficients. Colored boxes on the left side indicate crops with (A) and without

Free access

David J. Chalmers, Preston K. Andrews, Kevin M. Harris, Ewen A. Cameron and Horst W. Caspari

The design of a type of drainage lysimeter, as tested with trees of Pyrus serotina Rehder var. culta Rehder `Hosui' is described. All lysimeter operations and monitoring of irrigation and drainage volumes were managed by a “multi-tasking” controller/datalogger. It was possible to apply different irrigation levels to each of three sets of four random lysimeters. Evapotranspiration (ET) was calculated using a conservation of water equation, with differences between irrigation inputs and drainage outputs corrected for changes in soil-water content. ET ranged between 3.3 and 10.7 liters/tree per day in well-watered, noncropped trees in late Summer and Fall 1990. These rates correspond to ET of 0.13 to 0.43 liter·cm-2·day-1 and 0.96 to 3.10 liters·m-2·day-1 on trunk cross-sectional area and canopy area bases, respectively. The correlation coefficient between ET and Class A pan evaporation was >0.9 during this period. Weekly crop coefficients for the well-watered trees averaged 0.52 when calculated on a canopy-area basis. When irrigation was withheld for 18 days, the crop coefficient declined to 0.38. There were no differences in ET between trees growing in the two soil profiles, despite significant differences in soil water distribution.

Free access

T.K. Hartz

Drip-irrigation scheduling techniques for fresh-market tomato (Lycopersicon esculentum Mill.) production were compared in three growing seasons (1989-91). Three regimes were evaluated: EPK [reference evapotranspiration (ETo, corrected Penman) × programmed crop coefficients], ECC (ET0 × a crop coefficient based on estimated percent canopy coverage), and SMD (irrigation at 20% available soil moisture depletion). EPK coefficients ranged from 0.2 (crop establishment) to 1.1 (full canopy development). Percent canopy coverage was estimated from average canopy width ÷ row width. Irrigation in the SMD treatment was initiated at -24 kPa soil matric tension, with recharge limited to 80% of daily ET0. The EPK and ECC regimes gave similar fresh fruit yields and size distributions in all years. With the EPK scheduling technique, there was no difference in crop response between daily irrigation and irrigation three times per week. In all seasons, ECC scheduling resulted in less total water applied than EPK scheduling and averaged 76% of seasonal ET0 vs. 86% for EPK. Irrigating at 20% SMD required an average of only 64% of seasonal ET0; marketable yield was equal to the other scheduling techniques in 1989 and 1991, but showed a modest yield reduction in 1990. Using an SMD regime to schedule early season irrigation and an ECC system to guide application from mid-season to harvest may be the most appropriate approach for maximizing water-use efficiency and crop productivity.