Search Results

You are looking at 61 - 70 of 226 items for :

  • "cultivar identification" x
Clear All
Free access

R.N. Trigiano, M.H. Ament, M.T. Windham and J.K. Moulton

Cornus kousa Hance (Korean or kousa dogwood) cultivars are increasingly used as landscape plants because they lack the disease and insect problems typically associated with the native C. florida L. (flowering dogwood). A number of red-bracted kousa dogwood cultivars are now available and several are phenotypically indistinguishable from one another. Plants of six cultivars obtained from three nurseries were characterized genetically using deoxyribonucleic acid (DNA) amplification fingerprinting (DAF) and arbitrary signatures from amplification profiles (ASAP). DAF profiles of three red-bracted cultivars—`Rosabella', `Satomi' and `Heart Throb'—were nearly identical. ASAP also failed to clearly differentiate these cultivars and indicated consistent genetic similarities. In contrast, another red-bracted cultivar `Christian Prince' and two white-bracted cultivars—`Little Beauty' and `Samaritan'—were identified and separated from all other cultivars by both DAF and ASAP techniques.

Free access

Hilde Nybom

Hybridization of minisatellite DNA with an M13 probe yields DNA fingerprints that usually are highly cultivar-specific. However, 15 different sports of `Red Delicious' apples (Malus × domestics Borkh.) exhibited almost identical fingerprints. The mutations determining the morphological differences between the sports could not be detected by the minisatellite probe. These hypervariable DNA sequences appear rather stable in apples, making them ideal for differentiating between cultivars derived through genetic recombination but probably not very useful for differentiating between vegetative sports.

Free access

D.G. Ranamukhaarachchi, R.J. Henny, C.L. Guy and Q.B. Li

Randomly amplified polymorphic DNA (RAPD) markers were utilized to determine the genetic relationships of nine morphologically similar pot plant cultivars of Anthurium sp. by developing DNA fingerprints (DFP). Of 25 arbitrary primers screened, nine generated DFPs that were used in computing the genetic distance (d) and similarity coefficient (C) values. All cultivars tested exhibited a high degree of genetic similarity. `Lady Ann' and `Lady Beth' possessed the closest relationship with d and C values of 0.06 and 0.98, respectively. The next closest genetic relationship was between `Red Hot' and `Southern Blush' (d = 0.33, C = 0.89). These two cultivars exhibited a more distant relationship to the other seven cultivars as indicated by higher `d' values. However, this study showed that the nine Anthurium cultivars examined were genetically closely related. These cultivars share specific DNA bands with three possible parental species (A. andraeanum Linden ex Andre, A. antioquens L., and A. amnicola Dressler) included in this study, which may indicate similarities in their pedigree. This study shows that RAPDs can be a useful tool to distinguish Anthurium pot plant cultivars as well as identify their genetic relationships.

Free access

Yuanwen Teng, Kenji Tanabe, Fumio Tamura and Akihiro Itai

A total of 118 Pyrus sp. (pear) and cultivars native mainly to east Asia were subjected to randomly amplified polymorphic DNA (RAPD) analysis to evaluate genetic variation and relationships among the accessions. Two hundred fifty RAPD markers were scored from 20 decamer primers. RAPD markers specific to species were identified. Clustering analysis revealed two divisions: one comprising cultivars of P. communis L., and the other including all accessions of Pyrus native to east Asia. The grouping of the species and cultivars by RAPD data largely agrees with morphological pear taxonomy. However, some noted incongruence existed between two classification methods. Pyrus calleryana Dcne. clustered together with P. koehnei Schneid., P. fauriei Schneid. and P. dimorphophylla Makino. Pyrus betulaefolia Bge. clustered with P. ×hopeiensis Yu and P. ×phaeocarpa Rehd. A noncultivated clone of P. aromatica Kikuchi et Nakai grouped with P. aromatica cultivars. Pyrus hondoensis Nakai et Kikuchi and cultivars of P. ussuriensis Max. formed a single group. Some accessions from Korea (named Korean pear) had species-specific RAPD markers and comprised an independent group. Most of the Chinese white pears clustered together with most of the Chinese sand pears. Based on the present results, the new nomenclature P. pyrifolia var. sinensis (Lindley) Teng et Tanabe for Chinese white pear was suggested. Most accessions of Japanese pears fell into one main group, whereas pear cultivars from Kochi Prefecture of Japan subclustered with some Chinese sand pears and one accession from Korea. Our results infer that some local Japanese pear cultivar populations may have been derived from cultivars native to Kochi Prefecture in Shikoku region, and that the latter may have been introduced from ancient China and/or Korea.

Free access

A. Belaj, I. Trujillo, R. de la Rosa, L. Rallo and M.J. Giménez

Random amplified polymorphic DNA (RAPD) analysis was performed on the main Mediterranean cultivars of olive (Olea europaea L.) from the Germplasm Bank of the Centro de Investigación y Formación Agraria “Alameda del Obispo” in Cordoba, Spain. One hundred and ninety reproducible amplification fragments were identified using 46 random primers followed by agarose gel electrophoresis. Some 63.2% of the amplification products were polymorphic, with an average of 2.6 RAPD markers obtained for each primer. The combination of polymorphic markers resulted in 244 banding patterns. The high degree of polymorphism detected made identification of all the cultivars (51) possible by combining the RAPD banding patterns of just only four primers: OPA-01, OPK-08, OPX-01, and OPX-03. Cultivar-specific RAPD markers and banding patterns were also found. A dendrogram based on unweighted pair-group method cluster analysis was constructed using a similarity matrix derived from the RAPD amplification products generated by the 46 primers. Three major groups of cultivars could be distinguished by RAPD analysis: 1) cultivars from east and northeast Spain, 2) Turkish, Syrian, and Tunisian cultivars, and 3) the majority of common olive cultivars in Spain. The dendrogram thus showed a good correlation between the banding patterns of olive cultivars and their geographic origin. A higher level of polymorphism was observed when polyacrylamide gel electrophoresis was used to separate the amplification products. Thus, adequate use of RAPD technology offers a valuable tool to distinguish between olive cultivars.

Free access

R.N. Trigiano, M.C. Scott and G. Caetano-Anollés

The chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars `Dark Charm', `Salmon Charm', `Coral Charm' and `Dark Bronze Charm' are either radiation-induced mutants or spontaneous sports of `Charm' and constitute a family or series of plants that primarily differ in flower color. These cultivars, which were difficult to differentiate genetically by DNA amplification fingerprinting (DAF), were easily identified by using arbitrary signatures from amplification profiles (ASAP). Genomic DNA was first amplified with three standard octamer arbitrary primers, all of which produced monomorphic profiles. Products from each of these DNA fingerprints were subsequently reamplified using four minihairpin decamer primers. The 12 primer combinations produced signatures containing ≈37% polymorphic character loci, which were used to estimate genetic relationships between cultivars. Forty-six (32%) unique amplification products were associated with individual cultivars. The number of ASAP polymorphisms detected provided an estimate of the mutation rate in the mutant cultivars, ranging from 0.03% to 1.6% of nucleotide changes within an average of 18 kb of arbitrary amplified DAF sequence. The ASAP technique permits the clear genetic identification of somatic mutants and radiation-induced sports that are genetically highly homogeneous and should facilitate marker assisted breeding and protection of plant breeders rights of varieties or cultivars.

Free access

A. Fabbri, J.I. Hormaza and V.S. Polito

Seventeen olive (Olea europaea L.) cultivars, including oil and table olive cultivars originating from throughout the Mediterranean area, were screened using random amplified polymorphic DNA (RAPD) markers. The results indicate that a high degree of polymorphism is evident in the olive germplasm reexamined. Forty random decamer primers were screened; seventeen of these produced 47 reproducible amplification fragments useful as polymorphic markers. Each of the 17 cultivars can be discriminated with a few primers. Results were analyzed for similarity among the cultivars and a cluster analysis was performed. These analyses revealed two main groups: one comprising primarily small-fruited cultivars grown mainly for oil production, and the other characterized by having large fruit. There was no apparent clustering of olive cultivars according to their geographic origins.

Free access

Naomi R. Smith, Robert N. Trigiano, Mark T. Windham, Kurt H. Lamour, Ledare S. Finley, Xinwang Wang and Timothy A. Rinehart

genotype rather than solely on phenotypic characteristics. Molecular markers can be very useful in cultivar identification or in determination of parentage of sexually propagated species. This is particularly important for proprietary plants, because

Free access

Jianhua Li, Jeremy Ledger, Peter Del Tredici and Donglin Zhang

The identity of heath-leaved cypress is controversial. In this study nucleotide sequences of nuclear ribosomal DNA were used to identify heath-leaved cypress (Chamaecyparis `Ericoides') species. Sixteen individuals were sampled representing the five species of Chamaecyparis, `Ericoides', and four other genera of Cupressaceae (Cupressus, Fokienia, Juniperus, and Thuja). The results placed `Ericoides' unequivocally to Chamaecyparis thyoides, supporting a conclusion derived from wood anatomy. This study supports the usefulness and integrity of using molecular data to identify the genetic affinity of cultivars that are morphologically different from the parent species.

Free access

C.A. Weber

Lack of variation among black raspberry cultivars is thought to be a limiting factor in fruit production and in breeding improved cultivars. An assessment of the available diversity in black raspberry is needed to effectively develop improved cultivars. Such an assessment was done to estimate the genetic similarities for RAPD markers in 16 black raspberry genotypes and to determine the genetic diversity among these genotypes based on these markers. In addition, the ability to distinguish between the black raspberry genotypes, two red raspberry cultivars (Rubus idaeus L.), and a blackberry cultivar (Rubus hybrid) was determined. A similarity matrix from 379 RAPD markers was calculated, and a phylogenetic tree was constructed using the PHYLIP suite of phylogeny software, which revealed the relationship among the genotypes. An average of 81% similarity was calculated among 16 black raspberry genotypes with a maximum similarity of 98% and a minimum of 70%. The average similarity between black raspberry and red raspberry was 41% and was 26% between black raspberry and blackberry. Combined marker profiles from six RAPD primers could be used to distinguish between the 16 black raspberry genotypes. Red raspberry and blackberry could be distinguished from black raspberry by 27 and 29 of 30 RAPD primers tested, respectively. Genetic diversity was most prominent in genotypes from the extremes of the black raspberry indigenous range. Diversifying the germplasm pool for black raspberry cultivar improvement can be achieved through utilizing genotypes from the extremes of the black raspberry range and through interspecific hybridization.