Search Results

You are looking at 61 - 70 of 124 items for :

  • "ascorbate peroxidase" x
Clear All
Free access

Feng wang Ma and Lailiang Cheng*

About 80 days after full bloom, well-exposed fruit on the south part of the canopy of mature Liberty/M.9 apple trees were randomly assigned to one of the following two treatments. Some fruit were turned about 180 degrees to expose the original shaded side to full sun whereas the rest served as untreated controls. On day 0, 1, 2, 4, 7, and 10 after treatment, fruit peel samples were taken from the original shaded side of the treated fruit and both the sun-exposed side and the shaded side of the control fruit at midday to determine photosynthetic pigments and enzymatic and non-enzymatic antioxidants. Maximum photosystem II efficiency of the original shaded side decreased sharply after 1 day exposure to full sun, and then gradually recovered to a similar value of the sun-exposed side of the control fruit by day 10. The shaded side of the control fruit had much lower xanthophyll cycle pool size and conversion and antioxidant enzymes and soluble antioxidants of the ascorbate-glutathione cycle than the sun-exposed side. In response to full sun exposure, xanthophyll cycle pool size of the original shaded side increased, reaching a similar value of the sun-exposed side by day 10. Ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase and total pool size and reduction state of both ascorbate and glutathione of the original shaded side all increased to the corresponding values found in the sun-exposed side of the control fruit over a 10-day period. It is concluded that both xanthophyll cycle and the ascorbate-glutathione cycle in the original shaded side are up-regulated in response to fullsun exposure to minimize photo-oxidative damage and contributes to its re-acclimation to full sun.

Free access

D. Mark Hodges and Gene E. Lester

The consumption of netted muskmelons (Cucumis melo L. Reticulatus group) has raised health concerns due to pathogenic bacteria attaching to sites on the netted rind inaccessible to sanitation. The purpose of this study was to compare 1) the enzymic and nonenzymic antioxidant capacity between representative cultivars of netted muskmelon and both green- and orange-fleshed honey dew muskmelons during storage for 17 days and 2) levels of non-nutrient phytochemicals between these genotypes in consideration of ultimately substituting netted orange-fleshed with non-netted orange-fleshed muskmelon. Netted muskmelon (`Cruiser'), green-fleshed (`Honey Brew'), and orange-fleshed (`Orange Dew') muskmelons were harvested in Texas at the beginning (21 May) and at the end (11 June) of the production season in 2004. Fruit were analyzed immediately (day 0) or stored simulating retail conditions for 7 or 14 days at 7 °C and 95% ± 2% relative humidity plus 3 days at 21 °C. Both `Orange Dew' and `Honey Brew' non-netted cultivars evinced similar and less lipid peroxidation, and hence postharvest senescence, during the 17-day storage period than the netted muskmelon `Cruiser'. In comparison with `Cruiser', `Orange Dew' generally exhibited higher concentrations of ß-carotene and phenolics and, with few exceptions, higher activities of the antioxidant enzymes ascorbate peroxidase (AsPX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), guaiacol peroxidase (POX), and superoxide dismutase (SOD). Higher AsPX and SOD activities in both `Orange Dew' and `Honey Brew' appear to confer a greater resistance to lipid peroxidation in these muskmelon genotypes than to the netted `Cruiser'. `Orange Dew' also appears to be a healthier food choice not only due to its lack of a netted rind which could potentially harbour human illness-related pathogens, but also that it is superior to both `Cruiser' and `Honey Brew' in overall beta-carotene and phenolic levels.

Free access

D. Mark Hodges, Charles F. Forney and Wendy V. Wismer

The objective of this study was to assess responses of certain antioxidants in harvested leaves of selected cultivars of spinach (Spinacia oleracea L.) differing in postharvest senescence rates in order to explore the significance of these antioxidants in postharvest senescence regulation and dynamics. Ten cultivars were grown in both field plots and laboratory growth chambers, harvested at maturity, and their leaves detached and stored at 10 °C in the dark. Following postharvest analysis, two cultivars were identified consistently as having relatively high (`Spokane F1') and low (`BJ 412 Sponsor') postharvest senescence rates. These two cultivars were then grown in a growth chamber for 45 days and their leaves detached and stored as above. At the point of harvest (day 0) and on days 4, 8, 12, 16, and 20, samples were analyzed for activities of ascorbate peroxidase (ASPX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6), and superoxide dismutase (SOD; EC 1.15.1.1), and (ii) concentrations of malondialdehyde (MDA, an indicator of lipid peroxidation), total ascorbate, reduced ascorbate (AsA), oxidized ascorbate (DAsA), total glutathione, reduced glutathione (GSH), and oxidized glutathione (GSSG). Although MDA accumulated in leaves of both cultivars concomitant with time after detachment, levels became significantly higher in `Spokane F1'. It is argued that declining activities of ASPX and levels of ascorbate and increasing activities of SOD manifested in accumulation of hydrogen peroxide in `Spokane F1', leading to a greater potential for lipid peroxidation in this cultivar than for `BJ 412 Sponsor'. SOD activities and glutathione levels may have increased as a result of elevated oxidative stress in `Spokane F1'. Increased hydrogen peroxide accumulation in `Spokane F1' relative to `BJ 412 Sponsor' may have contributed to an increased rate of senescence in the harvested leaves of this cultivar.

Free access

Sunita Kochhar, Christopher B. Watkins, Patricia L. Conklin and Susan K. Brown

The activities and isoenzyme patterns of guaiacol-dependent peroxidase (POX), ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT) were studied in yellow- and red-fruited crab apple [Malus (L.) Mill.] selections from a `White Angel' × `Rome Beauty' cross that show differential susceptibility to the physiological storage disorder, superficial scald. There were no consistent relationships between total enzyme activities and scald incidence, high activities of the enzymes being detected in selections with both high and low susceptibilities to scald. However, additional individual isoforms of some antioxidant enzymes were detected in the scald-resistant selections when compared with scald-susceptible selections. In a native gel system, four guaiacol-dependent POX isoenzymes were detected in both yellow and red scald-resistant selections compared with only two in scald-susceptible selections. Similarly, for anodic acidic POX assayed using benzidine, six isoenzymes were detected in both yellow and red scald-resistant selections compared with five in yellow and four in red susceptible selections. Ten SOD isozymes were detected in scald-resistant yellow-fruited selections compared with only five faint bands in scald-susceptible selections, but similar patterns were not detectable for red-fruited selections. Differences in the presence of various isoenzymes for CAT and APX were also detected among the selections, but associations with scald susceptibility were also affected by fruit color or were inconsistent. The presence or absence of individual isoenzymes may be a better indication of scald resistance or susceptibility than the total enzyme activities. Isoenzyme analyses, especially of POX, could be useful to breeders for the early detection of scald resistance/susceptibility in apples.

Free access

D. Mark Hodges and Charles F. Forney

Rapidly declining levels of ascorbate (vitamin C) have been associated with advancing senescence and postharvest quality loss in spinach (Spinacia oleracea L.). To further explore the association between ascorbate metabolism and senescence, two cultivars of spinach previously shown to differ in their postharvest senescence rates were grown under controlled conditions (18 °C, 14 light: 10 dark photocycle) and harvested 6 weeks after planting. Detached leaves of `Spokane F1' (relatively fast senescence rate) and `BJ412 Sponsor'(relatively slow senescence rate) were bagged and placed in the dark at 10 °C. Samples were removed on days 0, 7, 14, 21, and 28, and analyzed for activities of L-galactono-γ-lactone dehydrogenase (GLDH), ascorbate peroxidase (ASPX), ascorbate oxidase (AAO), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), and levels of ascorbate [reduced (AsA) and oxidized (DHA)] and malondialdehyde (MDA) (estimator of lipid peroxidation). Oxidative stress, as estimated by MDA levels, steadily increased in both spinach cultivars during storage, but increased more in `Spokane'than in `Sponsor'. GLDH activities peaked on day 14 for both cultivars and leveled off thereafter, while activities of ASPX, DHAR, and MDHAR declined during storage. ASPX activities were lower in `Spokane'than in `Sponsor'after day 21. No difference in AAO activities was noted between `Sponsor'and `Spokane'during storage. Total ascorbate concentrations declined in both cultivars on day 14 after which no further decreases were noted, while DHA/AsA ratios increased during storage. Early in the storage regime (days 0 and 7), ascorbate levels were lower in `Spokane'than in `Sponsor. GLDH activities may have increased as part of a strategy to maintain the ascorbate pool during escalating oxidative stress. However, decreased levels of ascorbate suggests that, even though ascorbate biosynthesis was increased, ascorbate was being degraded, possibly through hydrolysis of DHA to 2,3-diketogulonate. Initially lower levels of ascorbate (days 0 and 7) and lower activities of ASPX (day 28) in `Spokane' may have resulted in comparatively greater susceptibility of this cultivar to oxidative stress than `Sponsor'.

Free access

D. Mark Hodges, Wendy V. Wismer and Charles F. Forney

The responses of certain antioxidants in detached leaves of two cultivars of spinach (Spinacia oleracea L.) differing in their senescence rates were assessed during storage in order to explore the significance of these antioxidants in senescence regulation and dynamics. To identify spinach cultivars differing in their senescence rates, 10 cultivars were grown in field plots, harvested at maturity, and their leaves detached and stored at 10 °C in the dark. At the point of harvest (d 0) and on d 5, 8, 12, and 15, samples were analyzed for lipid peroxidation (MDA), chlorophyll loss, and electrolyte leakage. The cultivars were also grown in laboratory growth chambers to corroborate field results. Two cultivars that were consistently identified as having relatively high (Spokane F1) and low (BJ 412 Sponsor) senescence rates were grown in growth chambers for 45 d, harvested at maturity, and their leaves detached and stored as above. At the point of harvest (d 0) and on d 4, 8, 12, 16, and 20, samples were analyzed for (i) activities of ascorbate peroxidase (ASPX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6), and superoxide dismutase (SOD; EC 1.15.1.1), and (ii) concentrations of MDA, total ascorbate, reduced ascorbate (AsA), oxidized ascorbate (DAsA), total glutathione, reduced glutathione (GSH) and oxidized glutathione (GSSG). Although MDA accumulated in leaves of both cultivars concomitant with time after detachment, levels became significantly higher in Spokane. Activities of ASPX declined in Spokane leaves following detachment but activities of SOD and levels of glutathione increased in this cultivar. GSH/GSSG increased in `Sponsor', but dramatically more so in `Spokane'. Ascorbate concentrations did not diminish in leaves of `Spokane' to the degree that they did in `Sponsor' tissue. DAsA/AsA values did not decrease in `Spokane' leaves following detachment, though they did in those of `Sponsor'. It is argued that declining activities of ASPX and levels of ascorbate and increasing activities of SOD manifested in accumulation of hydrogen peroxide in Spokane, leading to a greater potential for lipid peroxidation in this variety than for Sponsor. SOD activities and glutathione levels may have increased as a result of elevated oxidative stress in Spokane. Increased hydrogen peroxide accumulation in `Spokane' relative to `Sponsor' may have contributed to an increased rate of senescence in the leaves of this cultivar.

Free access

Brandon R. Smith and Lailiang Cheng

The objective of this study was to quantify how photoprotective mechanisms in the leaves of `Concord' grapevines (Vitis labruscana Bailey) respond to a range of iron (Fe) supply. Own-rooted, 1-year-old container-grown vines were fertigated twice weekly for 11 weeks with a complete nutrient solution containing 1, 10, 20, 50, or 100 μm Fe from ferric ethylenediamine di (o-hydroxyphenylacetic) acid (Fe-EDDHA). Leaf total Fe content did not increase in response to Fe supply; however, “active” Fe (extracted with 2,2′-dipyridyl) and chlorophyll (Chl) increased on a leaf area basis as applied Fe increased. At the lowest active Fe level, leaf absorptance and the efficiency of excitation transfer (Fv′/Fm′) was lower, and nonphotochemical quenching (NPQ) was significantly greater. Photosystem II (PSII) quantum efficiency decreased curvilinearly, and the proportion of PSII reaction centers in the open state (qP) decreased linearly as active Fe content decreased. On a Chl basis, the xanthophyll cycle pool size [violaxanthin (V) + antheraxanthin (A) + zeaxanthin (Z)], lutein, and β-carotene increased curvilinearly as active Fe decreased, and neoxanthin (Neo) increased at the lowest Fe level. On a leaf area basis, as active Fe decreased, V+A+Z and β-carotene decreased curvilinearly, and lutein and Neo decreased linearly. At noon, conversion of V to A and Z increased as active Fe decreased. On a Chl basis, activities of antioxidant enzymes superoxide dismutase (SOD), monodehydroascorbate reductase (MDAR), and dehydroascorbate reductase (DHAR) increased curvilinearly, and glutathione reductase (GR) activity increased linearly as active Fe levels declined. Ascorbate peroxidase (APX) and catalase (CAT), on a Chl basis, were relatively constant. On a leaf area basis, a decrease in active Fe increased SOD and MDAR activity, whereas APX, CAT, DHAR and GR activity decreased. Antioxidant metabolites ascorbate (AsA), dehydroascorbate (DAsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) also increased in response to Fe limitation when expressed on a Chl basis, whereas on a leaf area basis AsA and DAsA decreased and GSH increased curvilinearly. The GSH:GSSG ratio increased as active Fe declined, whereas the AsA:DAsA ratio did not change. In conclusion, both photoprotective mechanisms, xanthophyll cycle-dependent thermal dissipation and the ascorbate-glutathione antioxidant system, are enhanced in response to Fe deficiency to cope with excess absorbed light. In a low soil pH tolerant species such as V. labruscana, the foliar antioxidant system was upregulated in response to excess absorbed light from Fe deficiency-induced chlorosis, and there was no evidence of an increase in oxidative stress from high rates of applied Fe-EDDHA.

Free access

Lailiang Cheng and Fengwang Ma

Xanthophyll cycle conversion and the antioxidant system in the peel of apple fruit (Malus ×domestica Borkh. `Liberty') were monitored in the field over a diurnal course at about 3 months after full bloom. Compared with leaves, sun-exposed peel of apple fruit had much lower photosystem II operating efficiency at any given photon flux density (PFD) and a larger xanthophyll cycle pool size on a chlorophyll basis. Zeaxanthin (Z) level increased with rising PFD in the morning, reached the highest level during midday, and then decreased with falling PFD for the rest of the day. At noon, Z accounted for >90% of the xanthophyll cycle pool in the fruit peel compared with only 53% in leaves. Efficiency of excitation transfer to PSII reaction centers (F v′/F m′) was negatively related to the level of Z in fruit peel and leaves throughout the day. In fruit peel, the antioxidant enzymes in the ascorbate-glutathione cycle, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) showed a diurnal pattern similar to that of incident PFD. In contrast, the activities of APX and GR in leaves did not change significantly during the day although activities of both MDAR and DHAR were higher in the afternoon than in the morning. In both fruit peel and leaves, superoxide dismutase activity did not change significantly during the day; catalase activity showed a diurnal pattern opposite to that of PFD with much lower activity in fruit peel than in leaves. The total ascorbate pool was much smaller in fruit peel than in leaves on an area basis, but the ratio of reduced ascorbate to oxidized ascorbate reached a maximum in the early afternoon in both fruit peel and leaves. The total glutathione pool, reduced glutathione and the ratio of reduced glutathione to oxidized glutathione in both fruit peel and leaves also peaked in the early afternoon. We conclude that the antioxidant system as well as the xanthophyll cycle responds to changing PFD over the course of a day to protect fruit peel from photooxidative damage.

Restricted access

Min-Li Liu, Ching-Hsiang Hsieh and Yun-Yang Chao

a trial conducted in Oct. 2016. Superoxide dismutase (SOD) activity analysis was determined according to Paoletti et al. (1986) ; catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) activities were assayed following the procedures

Free access

Shaoyun Lu, Zhongcheng Wang, Yuejing Niu, Zhenfei Guo and Bingru Huang

system consists of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), and some nonenzyme antioxidants such as ascorbic acid (AsA) and glutathione (GSH), which protect plants from the deleterious