In spring 1999, a commercial NAA (1-naphthaleneacetic acid) preparation for trunk sprout inhibition was compared with a corrugated plastic trunk wrap, aluminum foil wrap, bimonthly hand removal of sprouts, use of NAA preparation plus bimonthly hand removal when sprouts appeared, and a nontreated control. Three recently planted groves on three different rootstocks [`Midsweet' orange (Citrus sinensis)] on Swingle citrumelo (Citrus paradisi × Poncirus trifoliata), `Valencia' orange on Volkamer lemon (Volk, Citrus limon), and `Minneola' tangelo (Citrus paradisi × C. reticulata) on Smooth Flat Seville (SFS, Citrus hybrid) received each of the treatments in a randomized complete block experimental design with trees blocked by initial height and circumference. Every 2 months, sprouts were counted on each tree and removed from the hand removal treatments. After 1 year, all sprouts were removed and counted and height and circumference of trees was determined. Across all experiments, 82% to 100% of nontreated trees produced trunk sprouts and all sprout control methods significantly reduced sprouts per tree. NAA treatments were never significantly less effective at sprout suppression than the wraps at the P = 0.05 level, although in two experiments, wraps were more effective than NAA at P = 0.10. Time of sprout appearance varied between the three experimental blocks. Plastic and foil trunk wraps enhanced development of trunk circumference compared with nontreated controls in `Midsweet'/Swingle and `Valencia'/Volk. Greater trunk circumference resulted from use of wraps versus NAA in all three experiments, which appeared unrelated to differential sprout suppression. In these experiments, it appears that either wraps enhanced tree development beyond the suppression of sprouts or NAA influence on tree metabolism somewhat reduced trunk growth. The economics of the sprout suppression methods are also discussed.
Chloroplast DNA (cpDNA) restriction fragment length polymorphisms were used to study the parentage of lemons [Citrus limon (L.) Burm. f.] and several other putative hybrids. The 30 citrus accessions studied included nine lemons, three pummelos [C. maxima (Burm.) Merrill], three citrons (C. medica L.), three mandarins (C. reticulata Blanco, C. clementina Hort. Ex. Y. Tan., and C. sunki Hort. ex. Tan.), and single representatives of 13 other taxa. Four different fragments of citrus cpDNA were amplified by polymerase chain reaction using four universal chloroplast primers and amplification products were digested with four endonucleases, Rsa I, Dra I, Hae III, and Mbo I. A total of 104 different restriction fragments were scored and used for phylogenetic analysis by parsimony. The three taxa which have been proposed as ancestral Citrus L. sp., C. medica, C. maxima, and C. reticulata, had distinct cpDNA patterns. Pummelo contributed the chloroplast genome to lemons, sweet orange [C. sinensis (L.) Osbeck], and Bergamot orange (C. bergamia Risso and Poit.), and mandarin contributed the chloroplast genome to rough lemons (C. jambhiri Lush.), Rangpur lime (C. limonia Osbeck), and `Mexican' lime [C. aurantifolia (Christm.) Swing.]. Data suggest that the particular accessions of these ancestral species that were studied were not directly involved in the hybridization events that created these hybrids, since they have similar but not identical cpDNA restriction fragments. Using inter-simple sequence repeat markers that amplified from nuclear genomic DNA, a set of samples including pummelos, citrons, mandarins, sour oranges (C. aurantium L.), and `Samuyao' papeda (C. micrantha Wester) were tested as possible parents of lemons. Sour orange and citron together had all nuclear and chloroplast fragments found in lemon and are therefore proposed to be the maternal and paternal parents, respectively, of many commercial lemon cultivars, including `Lisbon', `Eureka', `Villafranca', and `Monachello'.
We evaluated the potential of microsatellite markers for use in Citrus genome analysis. Microsatellite loci were identified by screening enriched and nonenriched libraries developed from `Washington Navel' Citrus. Microsatellite-containing clones were sequenced and 26 specific PCR primers were selected for cross-species amplification and identification of cultivars/clones in Citrus. After an enrichment procedure, on average 69.9% of clones contained dinucleotide repeats (CA)n and (CT)n, in contrast to <25% of the clones that were identified as positive in hybridization screening of a nonenriched library. A library enriched for trinucleotide (CTT)n contained <15% of the clones with (CTT)n repeats. Repeat length for most of the dinucleotide microsatellites was in the range of 10 to 30 units. We observed that enrichment procedure pulled out more of the (CA)n repeats than (CT)n repeats from the Citrus genome. All microsatellites were polymorphic except one. No correlation was observed between the number of alleles and the number of microsatellite repeats. In total, 118 putative alleles were detected using 26 primer pairs. The number of putative alleles per primer pair ranged from one to nine with an average of 4.5. Microsatellite markers discriminated sweet oranges [Citrus sinensis (L.) osb], mandarin (Citrus reticulata Blanco), grapefruit (Citrus paradisi Macf.), lemon [Citrus limon (L.) Burm.f.], and citrange (hybrids of trifoliate orange and sweet orange), at the species level, but individual cultivars/clones within sweet oranges, mandarins and grapefruit known to have evolved by somatic mutation remained undistinguishable. Since these microsatellite markers were conserved within different Citrus species, they could be used for linkage mapping, evolutionary and taxonomic study in Citrus.
A brief (15 or 30 seconds) high-volume, low-pressure, hot-water drench at 68, 120, 130, 140, or 145 °F (20.0, 48.9, 54.4, 60.0, or 62.8 °C) was applied over rotating brushes to `Eureka' lemons (Citrus limon) and `Valencia' oranges (Citrus sinensis). The impact of this treatment on populations of surface microbes, injury to the fruit, the incidence of green mold (Penicillium digitatum)or sour rot (Geotrichum citri-aurantii), when inoculated into wounds one day prior to treatment, and temperatures required to kill the spores of these fungi and P. italicum suspended in hot water were determined. Fruit microbial populations were determined immediately after treatment. Decay and injuries were assessed after storage for 3 weeks at 55 °F (12.8 °C). The efficacy of the hot water treatments was compared to immersion of fruit in 3% wt/vol sodium carbonate at 95 °F (35.0 °C) for 30 seconds, a common commercial practice in California. Initial yeast and mold populations, initially log10 6.0 per fruit, were reduced to log10 3.3 on lemons and log10 4.2 on oranges by a 15-second treatment at 145 °F. Green mold control improved with increasing temperature and treatment duration. Green mold incidence was reduced from 97.9% and 98.0% on untreated lemons and oranges, respectively, to 14.5% and 9.4% by 30 seconds treatment with 145 °F water. However, immersion of lemons or oranges in 3% wt/vol sodium carbonate was superior and reduced green mold to 8.0% and 8.9%, respectively. Sour rot incidence on lemons averaged 84.3% after all water treatments, and was not significantly reduced, although arthrospores of G. citriaurantii died at lower water temperatures than spores of P. digitatum and P. italicum in in vitro tests. Sodium carbonate treatment for 30 seconds at 95 °F reduced sour rot to 36.7%. None of the treatments caused visible injuries to the fruit.
Sixteen cultivars of citrus (Citrus spp.) and close citrus relatives were planted in Savannah, Georgia to evaluate their potential as fruiting landscape trees in an area that routinely experiences minimum temperatures of 15 to 20 °F (-9.4 to -6.7 °C) during winter. Three to six trees of each cultivar were planted in 1998, and stem dieback and defoliation data were collected in 1999, 2001, and 2002. During the 4 years of the study, air temperatures fell below 32 °F (0.0 °C) 27 to 62 times per season, with absolute minima ranging from 13 to 18 °F (-10.6 to -7.8 °C), depending on year. In general, kumquats (Fortunella spp.), represented by `Meiwa', `Nagami', and `Longevity', were completely killed (or nearly so) in their first year in the field after air temperature minima of 13.5 °F (-10.28 °C). Others experiencing 100% dieback were `Meyer' lemon (Citrus limon × C. reticulata) and `Eustis' limequat (C. aurantifolia × Fortunella japonica), which were tested twice during the study. Kumquat hybrids, including procimequat [(C. aurantifolia × F. japonica) × F. hindsii), `Sinton' citrangequat [(C. sinensis × Poncirus trifoliata) × unknown kumquat], `Mr John's Longevity' citrangequat [(C. sinensis × P. trifoliata) × F. obovat], razzlequat (Eremocitrus glauca × unknown kumquat), and `Nippon' orangequat (C. unshiu × F. crassifolia) survived freezing, but all experienced at least some defoliation and stem dieback. `Owari' satsuma (C. unshiu), `Changsha' mandarin (C. reticulata), nansho daidai (C. taiwanica) and ichang papeda (C. ichangensis) experienced only minor stem dieback but substantial defoliation in most years, except that ichang papeda was substantially damaged in the last year of the study. Seven cultivars produced fruit at least once during their first 4 years: nansho daidai, ichang papeda, `Nippon' orangequat, `Mr John's Longevity' citrangequat, `Owari' satsuma, `Changsha' mandarin, and procimequat. Based on cold hardiness, fruiting, and growth characteristics, `Owari' satsuma, `Changsha' mandarin, `Mr John's Longevity' citrangequat, and `Nippon' orangequat provided the hardiest, most precocious and desirable fruiting landscape trees in this study.
As part of a larger study to improve rind color of citrus (Citrus spp.) fruit, this initial study was conducted to determine the concentration of various gibberellin-biosynthesis inhibitors required to elicit a biological response in citrus trees, as measured by vegetative growth. Paclobutrazol and GA3 were included as control treatments at concentrations known to elicit growth-retarding or growth-promoting effects, respectively. Repeated (×4) foliar applications of GA3 (at 64 ppm) increased growth of ‘Eureka’ lemon (Citrus limon) shoots by 63%, with no significant effect on rootstock and scion diameters. Repeated foliar applications of prohexadione-calcium (ProCa) at various concentrations (100, 200, 400, or 800 ppm) as well as uniconazole (at 500 or 1000 ppm) and paclobutrazol (at 0.25%) had no effect on rootstock or scion diameters 8 months after the first application. The high concentrations of ProCa (800 ppm) and uniconazole (1000 ppm), and the paclobutrazol treatment (0.25%) reduced shoot length compared with the control. Uniconazole at 1000 ppm resulted in the most growth retardation, which resulted in 34% shorter shoot length than the control. Although the number of nodes on the longest shoot did not differ from the untreated control, internode length differed significantly among treatments. ProCa at 400 and 800 ppm, uniconazole at 1000 ppm, and paclobutrazol at 0.25% significantly reduced internode length relative to the control by 31%, 56%, 50%, and 28%, respectively. Vegetative growth of ‘Eureka’ lemon nursery trees was retarded following the repeated (×4) foliar application of gibberellin-biosynthesis inhibitors. ProCa at 400 to 800 ppm and uniconazole at 1000 ppm were identified as prospective treatments for further field studies to test their effects on rind color enhancement of citrus fruit.
In a Fort Pierce, FL, field planting, plant growth, and Huanglongbing (HLB) severity were assessed as indicators of HLB tolerance on progenies of 83 seed-source accessions of Citrus and Citrus relatives mainly from the Riverside, CA, genebank. The HLB-associated pathogen [Candidatus Liberibacter asiaticus (CLas)] and vector [asian citrus psyllid (ACP), Diaphorina citri] were abundant, and trees were naturally challenged for 6 years before metrics (leaf mottle, percent canopy mottle, overall health, canopy density, canopy width, canopy height, and trunk diameter) were collected in Oct. and Nov. 2015. The healthiest trees with low or no HLB symptoms were distant citrus relatives: Balsamocitrus dawei, Bergera koenigii, Casimiroa edulis, Clausena excavata, Murraya paniculata, and one accession of Severinia buxifolia. Within Citrus, most of the healthiest trees with densest canopies, little leaf loss, and greater growth were those with pedigrees that included Citrus medica (citron). These included progenies of Citrus hybrid (‘Limon Real’), Citrus limetta, Citrus limettioides, Citrus limonia, C. medica, Citrus volkameriana, and some Citrus limon accessions. Trees in this category exhibited distinct leaf-mottle characteristic of HLB and substantial pathogen titers, but maintained dense canopies and exhibited good growth. Trees from seed-source accessions in the genus Citrus without citron in their background were generally among the least healthy overall with less dense canopies. The exceptions were progenies of two Citrus aurantium accessions, which were markedly healthier than progenies of other Citrus seed-source accessions not derived from citron. Linear regression analysis, between metrics collected and pedigree of seed parent, indicated that percentage of citron in the pedigree significantly correlated with measures of tolerance. Although no commercial Citrus genotypes yielded progenies with strong HLB resistance, in this field experiment several progenies maintained dense canopies and good growth, and may be useful for breeding HLB tolerant cultivars.
Abstract
The relative P dependency obtained for 3 citrus rootstock cultivars was rough lemon [Citrus limon (L)] > Carrizo citrange [Poncirus trifoliate × C. sinensis (L.)] > trifoliate orange [P. trifoliate (L.)]. After only 12 weeks of P deprivation, the youngest, fully expanded leaves of rough lemon (about 21 days old) had amounts of total N, nitrate, and NH3 that exceeded the levels in +P leaves of the same age by 8.4 mg total N, 2.6 mg nitrate, and 0.6 mg NH3 per gram of dry weight. It took 7 months for similar levels of these compounds to accumulate in the youngest, fully expanded leaves of Carrizo citrange (a less P-dependent rootstock) when grown under low P conditions. After 12 weeks of P deficiency, the incorporation of NaH14CO3 into arginine plus urea was 13-, 7.4-, and 4.7-fold greater in P-deficient leaves than P-sufficient leaves for rough lemon, Carrizo citrange, and trifoliate orange, respectively. Concomitantly, arginine accumulated in — P leaves to a concentration 4.2-, 2.1-, and 1.4-fold greater than in +P leaves, respectively, for the same 3 rootstocks. The data clearly demonstrate that relative P dependency of citrus rootstocks influences their N metabolism and support the hypothesis that a more P-dependent rootstock will accumulate total N, nitrate, and NH3 sooner or to a greater extent, exhibit a greater rate of de novo arginine biosynthesis, and accumulate a higher level of arginine than a less P-dependent rootstock. Thus, calculation of the N:P ratio during leaf nutrient analysis may be useful in evaluating the nutritional status of citrus trees. Whenever N:P ratios were >20, de novo arginine biosynthesis and arginine accumulation increased significantly, indicative of ammonia detoxification. The N:P ratio of P-sufficient plants was always <15 when arginine metabolism was normal.
Several orchard floor management strategies were evaluated beginning in Fall 1993 in a `Limoneira 8A Lisbon' lemon (Citrus limon) grove on the Yuma Mesa in Yuma, Ariz. and in a `Valencia' orange (Citrus sinensis) grove at the University of Arizona Citrus Agricultural Center, Waddell, Ariz. At Yuma, disking provided acceptable weed control except underneath the tree canopies where bermudagrass (Cynodon dactylon), purple nutsedge (Cyperus rotundus), and other weed species survived. Mowing the orchard floor suppressed broadleaf weed species allowing the spread of grasses, primarily bermudagrass. Preemergence (norflurazon and oryzalin) and postemergence (glyphosate and sethoxydim) herbicides were used to control weeds in the clean culture treatment in Yuma. After three harvest seasons (1994-95 through 1996-97), the cumulative yield of the clean culture treatment was 385 kg (848.8 lb) per tree, which was significantly greater than the 332 kg (731.9 lb) and 320 kg (705.5 lb) per tree harvested in the disking and mowing treatments, respectively. In addition, the clean culture treatment had a significantly greater percentage of fruit in the 115 and larger size category at the first harvest of the 1995-96 season than either the disk or mow treatments. At Waddell, the management strategies compared were clean culture (at this location only postemergence herbicides were used), mowing of resident weeds with a vegetation-free strip in the tree row, and a `Salina' strawberry clover (Trifolium fragiferum) cover crop with a vegetation-free strip. The cumulative 3-year yield (1994-95 through 1996-97) of the clean culture treatment was 131 kg (288.8 lb) per tree, which was significantly greater then the 110 kg (242.5 lb) per tree yield of the mowed resident weed treatment. The yield of the strawberry clover treatment, 115 kg (253.5 lb) of oranges per tree, was not significantly different from the other two treatments. The presence of cover crops or weeds on the orchard floor was found to have beneficial effects on soil nitrogen and soil organic matter content, but no effect on orange leaf nutrient content. The decrease in yield in the disked or mowed resident weed treatments compared to the clean culture treatment in both locations was attributed to competition for water.
). Histochemical and biochemical analyses of the stigmatic exudate show that it is heterogeneous and composed of lipids, polysaccharides, and proteins. Cresti et al. (1982) evaluated the stigma of Citrus limon and using SEM evaluations of fresh tissues