Search Results

You are looking at 51 - 60 of 317 items for :

  • warm-season turfgrass x
Clear All
Free access

Tracy Dougher, Toby Day, Paul Johnson, Kelly Kopp and Mark Majerus

The ongoing drought in the Intermountain West has brought a great deal of attention to water conservation over the past several years. During that time, turfgrass irrigation has been targeted as a source for large potential water savings. Some communities promote downsizing turfgrass areas as the best water conservation measure. In reality, turfgrass controls erosion, reduces evaporation from a site, and provides a safe surface for human activities. One alternative to elimination would be wider use of low water-use-grasses appropriate to the area. However, many questions arise regarding the choice of such grasses and their management. Our research addresses these questions. Plots have been established at Montana State University, Bozeman; Utah State University, Logan; and USDA-NRCS Plant Materials Center, Bridger, Mo. The grasses considered include 12 single species and 12 mixed species stands of `Cody' buffalograss, `Foothills' Canada bluegrass, `Bad River' blue grama, sheep fescue, sandberg bluegrass, muttongrass, and wheatgrasses `Sodar' streambank, `Road Crest' crested, `Rosana' western, and `Critana' thickspike with Kentucky bluegrass and tall fescue as controls. Line source irrigation allowed the plots to be evaluated at a number of levels of irrigation. Experimental measurements on the plots included growth response as determined by clipping yield and quality ratings, and species composition. Fescues and wheatgrasses retained their color, texture, and density throughout the growing season, regardless of moisture level. Warm-season grasses performed well in June, July, and August only, and worked poorly in mixtures as the green cool-season grasses could not mask the brown dormant leaves in cooler weather.

Full access

J.M. Goatley Jr., D.B. Smith, P.D. Gerard and G.E. Coats

Research was conducted to evaluate the performance of a hydraulically driven turfgrass sod strength machine equipped with a force transducer to measure various strength parameters. The most commonly reported strength parameter, peak force (PF), continued to provide the quickest and easiest measurements of sod strength. Calculations of work involving the continuous measurement of sod strength over the duration of the stretch did not consistently improve the information provided by the PF measurement. Changes in sod bed pull speeds altered the calculations of work, whereas pull speed changes generally had little effect on force measurements, an important consideration for sod strength measurement devices that have limited control of sod bed pull speed. The unit was marginally successful in distinguishing sod strength differences between St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze.] treated with various levels of pyridine herbicides. The device also provided strength parameters that distinguished the relative strengths of four warm-season turfgrass sods.

Full access

Robert Andrew Kerr, Lambert B. McCarty, Philip J. Brown, James Harris and J. Scott McElroy

quality in cool-season turfgrass: II. Factors affecting NDVI and its component reflectance Crop Sci. 51 2219 2227 Brosnan, J. Breeden, G. Patton, A. Weisenberger, D.V. 2014 Triclopyr reduces smooth crabgrass bleaching with topramezone without compromising

Free access

Steven C. Wiest

A system for the digital analysis of photographic prints of turfgrass plots is being developed. The 3-year-old turfgrass plots included Meyer zoysiagrass, Midlawn bermudagrass, Prairie buffalograss and Mustang tall fescue. The plots were photographed by a camera with a small dual bubble level on the camera back and a 28-mm-wide angle lens. Photographs were digitized with flatbed scanners. The images can then be analyzed in a variety of ways. For example, a series of photographs were taken from mid-Sept. through late Oct 1995 and spectral analysis of the resultant digital images were made. The initial RGB (red-greenblue) format of the images was converted to HSI (hue-saturation-intensity) for analysis. The results indicate, obviously, that hue changed from 104 (i.e., green) to 75.7 degrees (i.e., brownish) between the beginning and end of Oct. 1995. Similarly, intensity changed from ≈0.12 to ≈0.16 during the same time period, indicating that the images became darker over time. These phenomena were observed in all four species examined. However, the saturation value evoked a significant species * date interaction. The three warm-season species showed a decrease in saturation, while Mustang had no significant decrease during Oct. Spectral as well as textural analysis are likely the two most useful techniques in the digital analysis of turfgrass plots. Examples of both will be presented.

Free access

J.B. Beard, R.L. Green and S.I. Sifers

Cultivar selection is one method used for the conservation of irrigation water. The primary objective of this research was to evaluate the evapotranspiration (ET) rates of 24 well-watered, turf-type bermudagrass (Cynodon spp.) genotypes under field conditions and established on a fritted clay root zone contained in plastic minilysimeter pots. A secondary objective was to correlate ET rate to leaf extension rate, a potential rapidly assessed predictor of the amount of leaf surface area present for ET. ET rates were determined by the water-balance method. Both the overall ET and leaf extension rate differed significantly among genotypes. ET rates were not correlated with leaf extension rates in individual years. Our data indicated a potential for water savings based on bermudagrass cultivar selection that was similar to the reported potential water savings based on warm-season turfgrass species selection.

Full access

K.L. Hensler, B.S. Baldwin and J.M. Goatley Jr.

A truly soilless turfgrass sod may be produced on kenaf-based (Hibiscus cannabinus L.) fiber mat that offers the integrity of field-cut sod without the use of mineral soil growing medium. This research was conducted to determine the feasibility of producing warm-season turfgrass sod on such a biodegradable organic mat. Seeded turfgrass plots contained 4.9 lb/1000 ft2 (24 g.m−2) of pure live seed planted on a 66-lb/1000 ft2 (325-g.m−2) organic fiber mat carrier placed atop either 66- or 132-lb/1000 ft2 (325- or 650-g.m−2) organic fiber mats. In an experiment using vegetative material, stolons were applied at rates of 16.4 ft3/1000 ft2 (0.82 L.m−2) over 132- or 198-lb/1000 ft2 (650- or 975-g.m−2) organic fiber mats and covered with a rayon scrim. All plots were placed on 6-mil black plastic. Nitrogen was applied at 0.9 lb/1000 ft2 (4.4 g.m−2) weekly in addition to a monthly micronutrient application. Bermudagrass (Cynodon σππ.) had quicker establishment than other grasses in the study, with stolonized and seeded plots achieving ≈100% coverage by 9 weeks in 1995 and 6 weeks in 1996, respectively. By 15 weeks after planting in 1995, the plot coverage ratings for seeded centipedegrass [Eremochloa ophiuroides (Munro) Hack. `Common'] and all stolonized grass plots of centipedegrass, zoysiagrass (Zoysia japonica Steud. `Meyer'), and St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze `Raleigh'] were 91% or higher. The results were much less favorable in 1996 than 1995 due to a later planting date and an irrigation failure.

Free access

Bekele G. Abeyo, Robert C. Shearman, Roch E. Gaussoin, Leonard A. Wit, Desalegn D. Serba and Ugur Bilgili

buffalograss turf, especially in northern climates and intensively used turf sites, like golf course fairways and sports fields ( Shearman et al., 2004 ). Overseeding cool-season grasses into warm-season grasses to temporarily extend turfgrass performance in

Free access

J.M. Goatley Jr., V.L. Maddox and K.L. Hensler

Bermudagrass turfs in the southern United States often receive late growing season applications of nitrogen (N) in order to sustain turfgrass color prior to dormancy, even though such applications might increase winterkill potential. Yearly research trials were initiated in the last week of Sept. 1989 to 1991 at Mississippi State Univ. to evaluate fall and spring color responses and rhizome levels of total nonstructural carbohydrates (TNC) of `Tiflawn' and Arizona (AZ) Common bermudagrass [Cynodon dactylon L. (Pers.)] treated with various N sources delivering N at 98 kg·ha-1 in a single application. The fertilizers were ammonium nitrate (AN), sulfur-coated urea (SCU), a natural organic (`Milorganite', NO), isobutylidene diurea (IBDU), ureaformaldehyde (UF), and methylene urea (MU). Color responses from N fertilization were most prominent in the fall except when there was an early frost event in Oct. 1990. The most rapid greening response and highest color ratings were consistently observed for the water-soluble AN. Of the slow-release sources, SCU, MU, and IBDU provided color responses as long as temperatures remained warm enough to promote bermudagrass growth. The NO source provided an unexpected, significant greening response in Oct. 1989 and 1991 on `Tiflawn', but not on AZ Common. The UF consistently provided the lowest color ratings. There were virtually no differences in TNC levels between N treatments for either grass. At no time was there any indication that N fertilization increased bermudagrass winterkill potential; to the contrary, the predominant responses were better fall and spring color than the nontreated control.

Free access

Haibo Liu

; the Center of Turfgrass Science at Rutgers for providing the facilities and funding for this project; the seed supplies from the NTEP program and Simplot (Jacklin Seed); Dave Starner (Agricultural Experiment Station of Virginia Polytech. & State

Free access

Neil L. Heckman, Garald L. Horst and Roch E. Gaussoin

Buffalograss [Buchloë dactyloides (Nutt.) Engelm.] is a warm-season perennial grass native to the North American Great Plains region and has been used as a low-maintenance turfgrass. Turf-type buffalograsses are available and are commonly used on nonirrigated land. Our objectives were to determine the deepest planting depth of burrs that would allow acceptable emergence, and to evaluate planting depth effects on buffalograss seedling morphology. Two greenhouse experiments were conducted in Fall 2000. Experimental design was a randomized complete block with 4 replications and a 3 (cultivar) × 6 (planting depth) factorial treatment arrangement. Results showed that buffalograss emergence decreased as planting depth increased. All cultivars had <10% total emergence at planting depths >50 mm. Emergence rate indices were greatest when planting depth was 13 mm and were significantly lower at planting depths of 51 and 76 mm. Average coleoptile length was 11 mm. Coleoptile length was similar between all planting depths except for the 13 mm depth which resulted in 9-mm-long coleoptile. Subcoleoptile internode length increased with planting depth up to 38 mm. Planting depths deeper than 38 mm did not significantly increase subcoleoptile internode length.