Search Results

You are looking at 51 - 60 of 428 items for :

  • osmotic adjustment x
Clear All
Author:

The effect of water stress on photosynthesis was investigated in strawberry plants to see responses of different aged-leaves within the same plant. Preliminary results indicated that, under severe stress (SS) conditions, young leaves had lower water potentials and higher photosynthetic CO2 assimilation rates than old leaves had, due to higher stomatal conductance in young leaves. This situation was not found in moderately stressed or well–watered plants, probably because of the higher non-stomatal limitation in old leaves under SS condition. Under SS condition, old leaves had a higher intracellular CO2 concentration. Osmotic adjustment or acclimation might occur during slow drying process, so that the young leaves could adjust their stomata and still remain open under low water potentials.

Free access

Pecan is a riparian species distributed over an area of geographic and climatic variation; such a wide distribution produces exposure to varied environmental conditions, providing a potential for genetic adaptation within the cultivars. Genotypes can be screened in order to obtain more drought tolerant cultivars using indirect screening parameters (chlorophyll fluorescence, osmotic adjustment, and abscisic acid assay) based on physiological responses of plants to abiotic stress conditions. A study was established at Texas A&M University, College Station, using a mixture of fritted clay (Quick dry) and pure sand in 1:1 (by weight) ratio to study the effects of drought on pecan rootstocks. The experiment was set up with the three water potential levels as treatments (–0.033 MPa, –0.1 MPa, –0.3 MPa) in a randomized complete-block design with three blocks. Measurements will include leaf water relations (relative water content, leaf water potential, osmotic adjustments, etc.), gas exchange parameters [net carbon dioxide assimilation rate (A), transpiration rate (E), stomatal conductance (gs)], chlorophyll fluorescence measurements [minimum (Fo), maximum (Fm), and variable fluorescence (Fv), quantum efficiency], water use efficiency, and abscisic acid assay on roots. Statistical analysis systems (SAS) package will be used for analysis. PROC GLM of the SAS will be used for statistical analysis of study involving plant response to water potential levels.

Free access

Tomato plants (Lycopersicon esculentum Mill. cv. Capello) were grown in peat bags, rockwool slabs, and NFT in a greenhouse to examine the effects of nutrient solution electrical conductivity (EC) and potential evapotranspiration (PET)-dependent EC variation on plant water relations. Peat bags were irrigated by a PET-dependent irrigation system. EC was varied from 1 to 4 mS·cm-1 according to PET under –5 and –9 kPa of substrate water potential setpoints (SWPS). The plants in rockwool and NFT were treated with ECs of 2.5, 4, and 5.5 mS·cm-1. Peat bags and rockwool slabs were overwatered once a week to wash out the accumulated salts. Leaf water potential (ψ1) and relative water content (θ) were measured before and after plants were overwatered. Turgor (P) and osmotic π potentials were estimated from the pressure-volume method. Before plants were overwatered, ψ1 was significantly lower in the plants with high EC and low SWPS treatments and also lower in variable EC-treated plants, but P maintained close to the control value. After plants were overwatered, ψ1 recovered close to the control level and P became higher because of the lower π in the treatments of high EC, variable EC, and/or low SWPS. At a given ψ1 the plants with high EC, variable EC, and/or low SWPS maintained higher θ. The analysis of the pressure-volume curve showed that the leaves treated with high EC, variable EC, and/or low SWPS had higher turgid water content, higher symplasmic (osmotically active) water content, lower apoplasmic (osmotically inactive) water content, and lower θ point of zero turgor (incipient plasmolysis). Maintenance of P after overwatering was directly proportional to photosynthetic capacity. We suggest that osmotic adjustment occurs in response to high EC, low SWPS, or both and that overwatering substrates and varying EC can not only avoid salinity stress, but also improve turgor maintenance.

Free access

Abstract

Leaf water relations and soil-to-leaf resistance were studied in 3-month-old pecan [Carya illinoenis (Wangenh.) C. Koch] seedlings as soil dried progressively to minimum water potentials of −0.3, −0.6, and −1.1 MPa in three separate tests. Leaf conductance, transpiration, and predawn leaf water potential declined with increasing soil water deficits, and only predawn leaf water potential fully returned to pre-stress levels after rewatering. Reduced levels of leaf conductance following water stress were apparently caused by internal factors other than leaf water potential. Leaf conductance of well-watered seedlings decreased logarithmically and with increasing leaf-to-air vapor pressure gradient. Soil-to-leaf resistance to water flow varied diurnally and generally increased following water stress at minimum soil water potentials of −0.6 and −1.1 MPa. Osmotic adjustment and changes in the distribution of water between the apoplast and symplast in leaves did not occur in response to soil water potentials of −0.6 MPa.

Open Access

Abstract

The addition of (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-1,2,4-triazoI-1-yl-) pentan-3-ol) (paclobutrazol, PP333) at 0.05 or 0.20 ppm to a nutrient solution in which 4-month-old apple (Malus domestica, Borkh.) seedlings were growing, reduced terminal growth and increased root to leaf ratio. Plants pretreated with 0.20 ppm PP333 did not show a reduction in transpiration due to subsequent applied water stress induced by polyethylene glycol (PEG), whereas untreated plants decreased their transpiration in response to PEG stress at −0.5 and −0.75 MPa. The PP333 pretreatment at 0.20 ppm improved water balance of the seedlings since they had a higher water potential than untreated seedlings at equal or higher transpiration rates. Leaf osmotic adjustment to lower water potentials was shown to be leaf age-dependent irrespective of PP333 pretreatment.

Open Access

Diurnal and seasonal water relations, soil humidity, transpiration, water demand, stomatal resistance, and fruit production, as well as some microclimatic parameters, were studied in a semidomesticated chile ecotype (Capsicum frutescens) under two treatments of plastic mulches, black and opaque, and compared with plants without a mulch in Baja California Sur, a Mexican semiarid state. Plants with opaque plastic mulch showed the highest chile production and total growth. The biggest transpiration rates from January to April was evidenced also by this treatment. The soil water content seemed to be determinant. Opaque plastic mulch plants had more soil moisture during the whole experiment. Plants without plastic mulch had the least chile production, with a lesser soil water content. These plants evidenced an osmotic adjustment under drought stress with low water potential, maintaining a partial turgor pressure, and stomatal regulation, in order to control the lost of water by transpiration.

Free access

Garlic (Allium sativum L.) calli in vitro were evaluated over a range of salt concentrations and by adding mannitol to culture medium with reduced salt to provide equivalent osmoticum. The water potential of the medium ranged from -0.27 to -0.73 MPa under the various salt and osmotic stress conditions. The percent increase in calli was highest in standard Murashige & Skoog (MS) medium and was reduced when MS salts were reduced but the water potential of medium was adjusted to that of standard MS medium by addition of mannitol. The water potential of callus tissue was similar to that of tissue culture media over a 20-fold range (10% to 200%) of MS concentrations. Turgor of callus tissue was not influenced by any stress conditions. These results indicate that the optimum concentration of salt and water status of medium for formation of garlic calli was provided by standard MS medium.

Free access

Salt tolerance in grasses is needed due to increased restrictions on limited fresh water resources and to saltwater intrusion into groundwater. St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is used widely as a lawngrass in states bordering the Gulf of Mexico. We describe the response of four St. Augustinegrass cultivars to solution cultures differentially salinized with synthetic seawater. A sea salt mixture was added to half-strength Hoagland's No. 2 nutrient solution to provide six salinity treatments ranging from 1.1 to 41.5 dS·m-1. Adjustments in leaf water potential, leaf osmotic potential, and leaf turgor potential were measured as salt levels were increased gradually at 2-day intervals over 10 days. Salinity effects on growth of top, crown, and root of each cultivar were measured over 3 months. Turfgrasses differed in their response, but were consistent in adjustment in leaf water potential and in leaf turgor potential as salinity increased. Leaf water potential, leaf osmotic potential, and leaf turgor potential decreased linearly with increased salinity, but a positive turgor of 0.1 MPa was maintained at a salt concentration equal to that of seawater. `Seville', the most salt-tolerant St. Augustinegrass cultivar, exhibited a 50% reduction in top growth at 28.1 dS·m-1, while `Floratam', `Floratine', and `Floralawn' St. Augustinegrasses showed the same reduction in top growth at 22.8 dS·m-1. Differences between cultivars were greatest at salinity levels <10 dS·m-1, where `Seville' was twice as salt-tolerant compared to other cultivars. The grasses did not die, although top growth of all cultivars was severely reduced at a salt level equal to seawater.

Free access

Abscisic acid (ABA) is an important hormone regulating plant response to drought stress. The objective of this study was to investigate effects of exogenous ABA application on turf performance and physiological activities of kentucky bluegrass (Poa pratensis L.) in response to drought stress. Plants of two kentucky bluegrass cultivars, `Brilliant' (drought susceptible) and `Midnight' (drought tolerant), were treated with ABA (100 μm) or water by foliar application and then grown under drought stress (no irrigation) or well-watered (irrigation on alternate days) conditions in a growth chamber. The two cultivars responded similarly to ABA application under both watering regimes. Foliar application of ABA had no effects on turf quality or physiological parameters under well-watered conditions. ABA application, however, helped maintain higher turf quality and delayed the quality decline during drought stress, compared to the untreated control. ABA-treated plants exposed to drought stress had higher cell membrane stability, as indicated by less electrolyte leakage of leaves, and higher photochemical efficiency, expressed as Fv/Fm, compared to untreated plants. Leaf water potential was not significantly affected, whereas leaf turgor pressure increased with ABA application after 9 and 12 d of drought. Osmotic adjustment increased with ABA application, and was sustained for a longer period of drought in `Midnight' than in `Brilliant'. The results suggested that exogenous ABA application improved turf performance during drought in both drought-sensitive and tolerant cultivars of kentucky bluegrass. This positive effect of ABA could be related to increased osmotic adjustment, cell turgor maintenance, and reduced damage to cell membranes and the photosynthetic system.

Free access

Plant growth and osmotic adjustment of spiderplant were investigated in a glasshouse and under field conditions. Two fast-growing genotypes (P-landrace and P-commercial) and a slow-growing landrace (G-landrace) were grown under soil water deficit and watered conditions. The fraction of transpirable soil water (FTSW) was used as an indicator of water availability in pots. In the greenhouse, transpiration was determined by changes in daily pot weights and the ratio of transpiration of plants in soil water deficit to watered treatments expressed as normalized transpiration ratio (NTR). Water use in the field experiment was determined by gravimetric methods. The fast-growing genotypes had a higher rate of soil drying due to a higher rate of leaf area development. They were also more sensitive to soil water deficit with NTR beginning to decline at FTSW of 0.55-0.77 as compared to 0.29 for the slow-growing landrace. Also, the fast growing genotypes had FTSW thresholds for the stem elongation rate of 0.35-0.55 as compared to 0.20 for the slow growing landrace. The rate of leaf development declined when 40% to 60% of available water in the soil was removed, regardless of genotype. Leaf area of plants under field conditions decreased when the soil moisture was <60% field capacity. Under severe soil water deficit stress in pots, plants partitioned more biomass to roots than above ground; however, biomass partitioning between leaves and stems was not influenced by soil water deficit. Spiderplant showed limited osmotic adjustment (OA) in the range of 0.10-0.33 MPa at the highest soil water deficit (FTSW = 0). Thus, spiderplant is mainly a drought avoiding species. To achieve maximum growth, it is necessary to keep FTSW above 0.6.

Free access