Search Results

You are looking at 51 - 60 of 673 items for :

Clear All
Free access

R.E. McDonald, T.G. McCollum and E.A. Baldwin

The objective of this study was to determine the effects of prestorage heat treatments on chilling tolerance of tomatoes. Mature-green `Agriset' tomato fruit (Lycopersicon esculentum Mill.), either C2H4-treated or not, were immersed in 42C water for 60 min, held in 38C air for 48 hours, or not treated, and then stored at either 2C (chilled) or 13C (nonchilled) for 14 days before ripening at 20C. Heat-treated fruit stored at 2C and transferred to 20C ripened normally while nonheated fruit decayed before reaching red ripe. Color (a*/b* ratio), lycopene content, and internal quality characteristics of fruit were similar at the red-ripe stage irrespective of method of heat treatment. In red-ripe heat-treated fruit, free sterol levels were significantly higher in chilled fruit than in nonchilled fruit. Heating fruit in 38C air resulted in significantly higher levels of some free sterols compared with heating fruit in 42C water. Of the 15 flavor volatiles analyzed, six showed significantly decreased concentrations as a result of C2H4-treatment and seven showed decreased concentrations when stored at 2C before ripening. Some volatiles were decreased by the heat treatments. Prestorage short- and long-term heat treatments could allow for storage of mature-green tomatoes at lower temperatures with little loss of their ability to ripen normally.

Free access

R.E. McDonald, T.G. McCollum and E.A. Baldwin

Mature-green `Sunbeam' tomatoes (Lycopersicon esculentum Mill.) were treated in varying order with C2H4, 42 °C water for 1 hour, 38 °C air for 2days, held 2 days at 20 °C (partial ripening), or not treated and then stored at 2 °C (chilled) for 14 days before ripening at 20 °C. Heat-treated fruit stored at 2 °C and transferred to 20 °C ripened normally, while 63% of nonheated fruit decayed before reaching the red-ripe stage. Partially ripened fruit developed more chilling injury, were firmer, were lighter, and were less red in color than fruit not partially ripened. Lycopene content and internal quality characteristics of fruit were similar at the red-ripe stage irrespective of sequence of C2H4 exposure, heat treatment, or a partial ripening period. Of the 15 flavor volatiles analyzed, 10 were reduced by storage at 2 °C, Exposure to C2H4 before the air heat treatment reduced the levels of four volatiles, while C2H4 application either before or after the water heat treatment had no effect on flavor volatiles. Two volatiles were decreased and two were increased by partial vipening, Storage at 2 °C decreased the level of cholesterol and increased levels of campesterol and isofucosterol in the free sterol pool. Exposure to C2H4 before or following heat treatments, the method of heat treatment, and partial ripening had little effect on free sterols, steryl esters, steryl glycosides, or acylated steryl glycosides in the pericarp of red-ripe fruit. A shortor long-term heat treatment of mature-green tomatoes could permit storage at low temperatures with little loss in their ability to ripen normally, whereas partial ripening did not reduce chilling injury.

Free access

Robert L. Shewfelt and Albert C. Purvis

Free access

Robert L. Shewfelt and Albert C. Purvis

Free access

Navjot Kaur and Jiwan P. Palta

Freshly cut snapdragon (Antirrhinum majus L) spikes or carnation (Dianthus caryophyllus L cv. White Sim) stems were put in LPE (10 ppm for carnation, 25 ppm for snapdragon) solution for 24 hours and then transferred to deionized water. Parallel controls were kept continuously in deionized water. Snapdragon spikes were harvested when they had one-third of the florets opened which is a standard commercial practice. The carnations used in the experiment were harvested at three different stages of flower development starting from open brush bud stage (Stage IV) to fully opened (Stage VII, petals 45(to the stem) flower. LPE treatment delayed senescence in snapdragon by four days. Furthermore, it enhanced the opening of floral buds and opened all the florets on every spike. LPE treatment also significantly delayed loss in fresh weight of spikes associated with senescence, lowered the endogenous ethylene production and reduced ion leakage from florets. LPE had a similar effect on fresh weight and ion leakage from carnations if it was applied at an early stage of flower opening. Older carnations (Stage VII) were found unresponsive to LPE. In conclusion, LPE has the potential in enhancing the vase life of snapdragons and carnations. Carnations must be harvested at the open brush bud stage for effective LPE application. Our results suggest that LPE is prolonging vase life of cut flowers by reducing ethylene production and maintaining membrane integrity.