Search Results

You are looking at 51 - 60 of 312 items for :

  • "cantaloupe" x
Clear All

muskmelon is used for both netted muskmelons (cantaloupes) ( C. melo subsp. melo var. cantalupo ) and honeydew melons ( C. melo subsp. melo var. inodorus ) ( USDA-NAL, 2017 ). Netted muskmelons in the United States market are primarily orange fleshed

Open Access

) and muskmelon (also called cantaloupe or melon) ( Cucumis melo ). Records show that nearly two billion pounds of muskmelons were produced in the United States in 2008 with a market value of $371 million ( USDA, NASS, 2009 ). Pest and disease pressures

Free access

Melon wilt (MW) is one of the main diseases affecting the cucurbitaceous crops in the Pacific Central region of Mexico. The use of resistant varieties is the most effective strategy to reduce the damage caused by MW; however, variety performance depends on the fungal race occurring in the field. The use of fungicides, such as benzimidazols and methyl bromide, is a common practice, but there are contamination concerns, and a search is on for alternatives to diminish the negative effects on the agro-ecosystem. The aim was to determine the effect of the application of soil amendments and mulching on the incidence of MW, and on melon yield. Soil amendments incorporated were: rice straw (3 t·ha-1); compost 1, prepared with chicken and bovine manure, and banana and orange wastes (5.7 t·ha-1); compost 2, prepared with bovine and horse manure, coconut wastes and grasses (8 t·ha-1), vermicompost (3 t·ha-1), and a control. All treatments were established using transparent mulching during 21 days. The number of MW propagules in amended soils were similar at 5, 10, and 20 cm deep, but the percentage of diseased plants was higher (4.5%) in the control, which could be caused by the incidence of other fungi propagules, perhaps antagonistic, that contributed in diminishing the MW when compared with the control. The fruit weights and fruit sizes were not different between treatments on small (21–30 sizes), medium (15–18 sizes), and large (9–12 sizes), but total fruit numbers were 1.15-, 1.07-, 0.99-, and 1.09-fold higher when compared with the control. The application of soil amendments affected the antagonistic fungal populations even when it did not affect the cantaloupe yield. We suggest that soil amendments will improve soil fertility and increase melon yields, and studies are currently running.

Free access

Development of resistance to chemical pesticides has been reported in about 150 plant pathogenic species, mostly fungi. Biocontrol of plant pathogens is an alternative to chemical pesticides. Actually, there are products formulated with beneficial microorganisms, such as mycorrhizal fungi, rhizobacteria, antagonistic fungi, and others. The objective was to evaluate the development of Fusarium oxysporum f. sp. melonis (FOM) on melon plants inoculated with commercial biological formulations based on beneficial microorganisms. Twelve treatments were evaluated: T1) VAM media nursery + FOM; T2) Hortic Plus + FOM; T3) BioPak F + FOM; T4) Glomus intraradices + FOM; T5) FOM; T6) control; T7) VAM media nursery; T8) Hortic Plus; T9) BioPak F; T10) Glomus intraradices; T11) FOM + Mancozeb wp80; and T12) FOM + BioPak F. The melon cultivar used was `Colima' (Peto Seed Co.). Seeds were planted in Styrofoam growing containers containing coconut fiber powder as substrate. One seed was planted per cell and maintained until transplanting. Plants were transplanted to pots containing sterile soils 13 days postemergence. Inoculation of treatments with Fusarium was made with a concentrated suspension at 1 × 106 conidia/mL. For inoculation with beneficial microorganisms, manufacturer specifications were followed. A completely randomized design with 12 treatments and 12 replications was used to estimate the incidence of Fusarium, number of leaves, leaf area, root biomass, and percentage of roots colonized by mycorrhizal fungi. Overall, T10 showed the best behavior in all variables. Inoculation of cantaloupe plants with Fusarium affected their performance, but those treatments including mycorrhizal fungi enhanced their performance withstanding the damage by Fusarium.

Free access

Abstract

Muskmelon (cantaloupe), Cucumis melo L., lines W1, W3, W4, W5, and W6 released by the Southern and Northeastern Regions, Agricultural Research, Science and Education Administration, U.S. Department of Agriculture represent multidisease-resistant advanced breeding lines with high-quality attributes suited to the development of cultivars for long-distance shipping as well as for small farm and home garden production. They were selected under severe epiphytotie conditions in South Texas for resistance to downy mildew, Pseudoperonospora cubensis (Berk.) Rostow.; powdery mildew, Sphaerotheca fuliginea (Schlecht. ex Fr.) Poll.; Alternaria leaf-blight, Alternaria cucumerina (Ell. & Ev.) Elliot; and watermelon mosaic virus 1 (WMV-1). In extensive, replicated, repeated field studies, these lines were consistently found to possess a high level of resistance to all of these diseases, enabling production of a marketable crop under severe disease stress, often without application of fungicides. W4, W5, and W6 exhibit a higher level of resistance to dow ny mildew and Alternaria leaf-blight than do the more moderately resistant W1 and W3 lines. All 5 lines are highly resistant to powdery mildew and have excellent resistance to natural infections of WMV-1.

Open Access

Cantaloupe ( Cucumis melo L.) melons of the Reticulatus Group, commonly known as cantaloupes or muskmelons, are climacteric fruits in which ripening is highly coordinated by ethylene and have a relatively short storage life ( Seymour and

Free access

A new hybrid orange-fleshed netted melon has been bred specifically for use by the fresh-cut industry in winter. Quality characteristics of fresh-cut chunks from the hybrid were compared to those of its parental lines and to commercial cantaloupe and honeydew fruits available in winter. Female parent and hybrid chunks had higher soluble solids content (SSC) and firmness, and lower aromatic volatile concentrations versus that of the male parent. Hybrid chunks also had higher SSC (>3%) and were firmer (>5 N) than commercial fruit, and showed no appreciable differences in aromatic volatile concentrations to commercial honeydew or in surface color to commercial cantaloupe. Consumers liked the flavor, texture, sweetness, and overall eating quality of the hybrid chunks better than those of its inbred parents and winter honeydew and as well as or better than that of winter cantaloupe. Hybrid fruit stored 5 weeks at 1 °C under modified atmospheric conditions, then fresh-cut and stored 14 d in air at 5 °C maintained good quality (firmness = 51 N, SSC = 12.2%, surface pH = 6.0, beta-carotene and ascorbic acid concentrations = 14 and 182 mg·kg-1, respectively), and showed no signs of tissue translucency or surface pitting despite microbial populations approaching 8 log cfu·g-1. The results indicate that the orange-fleshed hybrid melon is a promising new melon type for fresh-cut processing, especially during the winter.

Free access

Abstract

‘Cinco’ is a multidisease resistant muskmelon (cantaloupe), Cucumis melo L., with excellent keeping qualities, good appearance, and delicate sweet taste. It is highly resistant to watermelon mosaic virus 1 (WMV-1); downy mildew, Pseudoperonospora cubensis (Berk. & Curt.) Rostow.; races 1 & 2 of powdery mildew Sphaerotheca fuliginea (Schlect. ex Fr.) Poll.; and Alternaria leaf-blight Alternaria cucumerina (Ellis & Everh.) Elliot. It was developed in south Texas where these fungus diseases occur regularly in epiphytotic proportions. The fruit keeps well for long-distance shipping. The size is that preferred by local market and home garden growers.

Open Access

.pdf > 10.1093/jee/82.6.1709 Perring, T.M. Royalty, R.N. Farrar, C.A. 1989 Floating row covers for the exclusion of virus vectors and the effect on disease incidence and yield of cantaloupe J. Econ. Entomol. 82 1709 1715 10

Free access
Author:

Abstract

The term “vein tract” is better than “suture” to denote the longitudinal indentations or unnetted strips which sometimes characterize the outward appearance of fruits of Cucumis melo L., reticulatus Naud. The term “suture” has a botanical ring in comparison to “grooves” or “stripes,” and I confess to having used it as much as anybody. Unfortunately, “suture” is here applied incorrectly; thus it is misleading to one who may be considering physiological explanations for unexplained variations in this surface feature.

Open Access