Search Results

You are looking at 51 - 60 of 123 items for :

  • "Juglans regia" x
Clear All
Free access

K.M. Kelley, S.A. Weinbaum, P.B. Catlin and T.T. Muraoka

Nitrogen (N) deficiency reduced biomass and altered N allocation within large walnut tree canopies (Juglans regia L. cv Serr). N-fertilized control trees contained 2.5 times more N in current year spurs, leaves and fruit than did those of N-deficient trees. The N content and biomass allocated to kernels was reduced in N-deficient canopies to a greater extent than was al location to current year shoots and foliage. N removal in abscised leaves and fruit was 3 times greater in canopies of fertilized trees than in N-deficient trees.

A non-destructive method is described to calculate total spur, leaflet and fruit numbers. Calculations were based on ratios of fruit counts on selected scaffold limbs to total fruit number per tree. Dry weight and N content of representative spurs, leaflets and fruit permitted estimation of whole canopy biomass and N content in these organs. N contained in current year spurs and the N lost from the tree in fruit and leaf litter were calculated for both N-fertilized control and N-deficient trees.

Free access

V.S. Polito, K. Pinney, R. Buchner and W. Olson

We investigated the basis for fruit drop in walnut (Juglans regia L.) following bloom period applications of streptomycin as a potential control treatment for walnut blight, a bacterial disease incited by Xanthomonas campestris pv. juglandis (Pierce) Dye. Experiments were conducted on streptomycin-treated field plots of `Vina' walnut. Four streptomycin treatments were applied at different times relative to anthesis. Fruit from all treatments grew similarly for four weeks following anthesis when high levels of fruit abscission began to occur in the treatment sprayed during the bloom period. Microscopy revealed that in this treatment ovules failed to develop normally, and neither embryo nor endosperm developed. The pattern of fruit development and timing of fruit drop following streptomycin treatment at bloom is similar in all ways to that of unpollinated walnut flowers where growth appears normal until abscission occurs 3 to 5 weeks after anthesis. Pollen germination and pollen tube growth were inhibited in the bloom-period treatments. Pollen germination in vitro was not affected by addition of streptomycin to a germination medium. If streptomycin were to be used in a walnut blight control program, application timed to coincide with the period of pistillate bloom and pistillate flower receptivity should be avoided.

Free access

Qinglong Zhang and Patrick H. Brown

The characteristics and mechanisms of foliar Zn uptake and translocation in pistachio (Pistachio vera L.) and walnut (Juglans regia L.) were investigated using 68Zn labelling in both intact and detached leaves. Following washing, mature walnut and pistachio leaves retained 8% and 12% of the total Zn applied, respectively. About half of retained Zn (3.5% and 6.5% of total Zn respectively) was absorbed into the leaf and translocated outside the treated area. Leaf age affected the Zn absorption capacity of pistachio but not walnut. Immature pistachio leaves absorbed more Zn than mature leaves. The absorption of Zn by walnut leaves at high concentrations (7.5 to 15 mm Zn) was not significantly affected by the pH of the solution. In pistachio Zn absorption was greatest at pH 3.5 and declined as pH increased to 8.5. The uptake process was not affected by light or addition of metabolic inhibitors. Foliar leaf absorption was only slightly affected by changes in temperature with an average Q10 of 1.2 to 1.4. This study suggests that foliar Zn uptake is dominated by an ion exchange and/or diffusion process rather than an active one. This study also demonstrates the usefulness of stable isotope labelling in studies of foliar Zn absorption.

Free access

Salih Kafkas, Hakan Ozkan and Mehmet Sutyemez

Turkey has more than 4 million walnut trees (Juglans regia L.), most of which are derived from seedlings, and are nongrafted trees. This characteristic leads to a huge opportunity to select superior walnut genotypes from natural populations for cultivation and for breeding programs. Several selection studies have been performed in the last decades and few genotypes were selected. The goal of this study was to characterize and determine genetic relationships among 21 walnut genotypes with potential in walnut production using amplified fragment length polymorphism (AFLP) and selective amplification of microsatellite polymorphic loci (SAMPL) techniques. Eight primer combinations (six for AFLP and two for SAMPL) were applied to 21 walnut genotypes and a total of 230 bands of which 50.4% of them were polymorphic were obtained. The SAMPL technique was more effective than AFLP in the separation of very closely related genotypes. Genotypes of the pairs `Maras-18' with `Maras-46', `KSU-5' with `Sutyemez-1', `Maras-12' with `Sutyemez-2,' `Kaman-3' with `Kaman-4', and `KSU-11' with `Maras-10' were the most closely related.

Free access

Keith E. Woeste, Gale H. McGranahan and M.N. Schroth

Walnut blight of English walnut (Juglans regia L.), incited by Xanthomonas campestris pv. juglandis (Pierce) Dowson, causes significant crop loss in California. To assess levels of resistance in walnut germplasm, leaves and nuts of mature walnut genotypes were inoculated with X. campestris pv. juglandis. Significant differences were found among cultivars in size and frequency of lesions on leaves and in frequency of abscission of diseased leaves. Cultivars also varied in frequency of abscission of nuts following infection and in marketability of infected nuts. Afthough there was considerable variation in disease levels over 2 years, leaves of PI 159568 consistently received significantly higher disease ratings than leaves of `Chandler' or `Adams'. Nuts of `Adams', `Payne', PI 18256, and `Sinensis 5' abscised less frequently following inoculation than nuts of other cultivars. In addition, the quality of infected nuts that did not abscise was consistently better for PI 18256 and `Sinensis 5'. The rank of cultivars for levels of disease in inoculated leaves was not significantly correlated with the rank of cultivars for frequency of infestation of dormant buds associated with infected foliage. The apparent resistance of walnut germplasm may be affected by the abscission or necrosis of infected tissues.

Free access

Gale H. McGranahan, Demetrios G. Voyiatzis, Peter B. Catlin and Vito S. Polito

The role of pollen in abscission of pistillate flowers of Persian walnut (Juglans regia L.) cv. Serr was investigated over a 4-year period by controlled pollinations and pollen counts. Self-pollen, pollen from other walnut selections or cultivars, or dead pollen was applied at high and low doses to pistillate flowers enclosed in pollination bags. Unbagged, open-pollinated flowers and bagged, nonpollinated flowers served as controls. In all cases, presence of pollen significantly increased the probability of pistillate flower abscission (PFA). Dead pollen resulted in as much PFA as live pollen. Counts of pollen grains confirmed that PFA-type flowers had significantly more pollen than normal flowers. In the fourth year `Serr' pollen was applied to unbagged flowers of `Serr' and ten other Persian walnut cultivars, and the amount of PFA on the artificially pollinated flowers was significantly higher than on the open-pollinated flowers, while the control flowers dusted with talc or pine pollen had almost no PFA. These results clearly indicate that excess pollen is involved in pistillate flower abscission in `Serr' walnut and suggests that other cultivars may also be sensitive to pollen load. This phenomenon may have implications in the biology of selfing and evolution.

Free access

I. Klein, S.A. Weinbaum, T.M. DeJong and T.T. Muraoka

Localized and carry-over effects of light exposure [as inferred from specific leaf weight (SLW)] on spur viability, flowering, and fruit set were monitored in selected spurs throughout walnut (Juglans regia, cvs. Serr and Hartley) tree canopies. Shaded spurs (i.e., average SLW <4 mg·cm-2) were predisposed to die during the winter, and spur mortality was accentuated among spurs that had borne fruit that season. More catkins and distillate flowers per spur were characteristic of the more exposed positions within the canopy (as indicated by SLW) during the previous summer and following an “off” year. In exposed `Serr' canopy positions (SLW >5 mg·cm-2), catkin and Pistillate flower maturation was reduced in fruiting spurs by 60% and 30%, respectively, in the subsequent year relative to vegetative spurs. In `Hartley', the number of distillate flowers was also reduced by 35% on spurs that fruited the previous year relative to spurs that had been vegetative. Maximum rates of return bloom and fruit set were evident in spurs exhibiting the highest SLW and N per unit leaf area (NA), specific to each cultivar. Among spurs of both cultivars, distillate flower development was more sensitive to shading in the previous season than was catkin development. Shell weight of `Serr' varied positively with SLW, but kernel weight, fruit N, and oil concentration did not vary “with SLW in either cultivar.

Free access

Vito S. Polito, Steven A. Weinbaum and Tom T. Muraoka

Experiments were conducted to determine if differential responses of walnut pollen germination to temperature, previously observed to occur among genotypes, were genetically fixed or expressions of phenotypic plasticity representing adaptive responses to temperatures experienced during pollen development. Individual branches of a single walnut (Juglans regia L. cv. Serr) tree were warmed above ambient conditions during the final stages of pollen differentiation by directing a stream of moist, heated air into polyethylene enclosures, each containing an individual branch unit. Pollen was collected at staminate anthesis and incubated in germination medium on a temperature gradient apparatus. Model curves fitted to the in vitro pollen germination data were used to determine optimum germination temperatures. We found adaptive responses of pollen germination to temperatures experienced during pollen development. The optimum temperature for in vitro germination for pollen from branches maintained under ambient conditions was lower than that of pollen from branches with elevated temperature, and optimum germination temperature increased as a log function of integrated daily temperature (degree-days) experienced during pollen development.

Free access

Ellen G. Sutter and Hamid Ahmadi

Somatic embryos of Juglans regia transformed with Agrobacterium rhizogenes Rol B gene and non-transgenic lines were proliferated on basal DKW medium. They were then transferred to media containing different concentrations of ABA, IBA and BA to increase the rate of proliferation and maturation. Transgenic embryos required 50 μM ABA and 40 μM IBA whereas non-transgenic embryos required 40μM ABA and 10 μM IBA. Neither kind of embryos required BA. Roots were. induced by drying embryos at 75% for 2-3 weeks until they lost about 30% fresh weight and then transferring them to basal DKW medium for an additional 2 weeks in the dark. Over 50% of the somatic embryos grown on medium containing both ABA and IBA developed well defined root systems compared to less than 15% of embryos grown on basal medium. A combination of 27 μM GA, and 9 μM BA was needed for development of shoot systems and germination of both transgenic and non-transgenic rooted embryos. Anatomical studies followed to characterize the extent of development at each stage.

Free access

Patrick H. Brown

Concentrations of N, P, K, Ca, Mg, B, Fe, Cu, Zn, and Mn in mature commercial fig (`Calimyrna'; `Sari Lop') leaves are presented throughout the growing season. These data can be used as preliminary norms for the interpretation of tree nutrient status for high-yielding commercial fig orchards. In comparison with other deciduous tree crops growing in the same regions {almond [Prunus amygdalus Batsch syn. P. dulcis (Mill) D.A. Webb], walnut (Juglans regia L.), peach [Prunus persica (L.) Batsch]}, productive fig trees have relatively low leaf N, P, and K concentrations (2.1%, 0.1%, and 1.0% dry weight, respectively) in July, although tissue Mn and Ca concentrations often exceed those typically found in other deciduous species growing in the same soils. Seasonal variations in fig leaf nutrient concentrations are similar to those of other tree crops. Marked declines in tissue K and N concentrations toward the end of the season may indicate a need for supplemental N and K fertilization in highly productive orchards. The potential for K deficiency in fig also is indicated by the generally lower leaf K concentrations in the low-vigor orchards examined.