Search Results

You are looking at 41 - 50 of 479 items for :

  • organic farming x
Clear All

In January 2002, an organic vegetable garden on the New Mexico State Univ. (NMSU) main campus was initiated to expose students to organic production practices and agricultural business management. The project named, OASIS (Organic Agriculture Students Inspiring Sustainability), is funded by a USDA Hispanic Serving Institution Grant and operated as a Community Supported Agriculture (CSA) venture. Students enroll in an organic vegetable production class during spring and fall semesters to help manage and work on the project. The CSA model of farming involves the sale of shares to members who receive weekly allotments of the farm's output. The objectives of the project are to provide students with a multi-disciplinary experiential educational opportunity, to investigate the feasibility of small scale organic drip irrigated farming in the Chihuahuan desert, to demonstrate the CSA model to the local community, to trial vegetable varieties, and to provide a site where faculty can conduct research or student laboratory exercises. This is the first organic vegetable garden on the NMSU main campus, the first organic vegetable production class, and the first CSA venture in southern New Mexico. The project has grown about 230 varieties of vegetables, herbs, and flowers in the first two years of production, and has grossed at total of $32,000 in revenues from both years on 2/3 of an acre of land. In the first year, 32 members purchased 18.5 full share equivalents, and in 2003, 69 members purchased 39.5 full share equivalents.

Free access

80 COLLOQUIUM 2 (Abstr. 636–642) Organic Horticulture

Free access
Author:

Organic farming has increased to a $4.2 billion industry in the U.S. and continues to expand ≈20% annually. In Iowa alone, organic acreage for all crops has increased from 13,000 in 1995 to 120,000 in 1998. Organic farmers have requested an unbiased analysis of natural soil amendments/fertilizers and compost products on the market for certified organic vegetable and herb production. In our first-year trials at the ISU Muscatine Island Research Farm in 1998, a total of 1,120 `Hungarian wax' pepper plants were transplanted into rows at 31 × 61-cm spacing. Four replications of seven fertilization treatments were planted within the field. The goal of the fertilization program was to obtain equivalent nitrogen and calcium rates in the organic and conventional systems. Leaf height was not significantly different in plants fertilized with organic compost (poultry litter-based) at 50 and 100 kg/ha N compared with conventional fertilizers (at 100 kg/ha N). All organic and conventional treatments had greater biomass than the organic and conventional controls (no fertilizer), respectively (ANOVA, P = 0.05). First harvest fresh weights were greater in the organic treatments, with the greatest number of peppers and greatest fresh weight in the compost plus Bio-Cal® (a liming industry by-product) treatment. Total pepper fresh weight over the five harvest periods was not significantly different among treatments, demonstrating to organic farmers that comparable yields can be obtained in systems employing alternatives to synthetic nitrogen fertilizer.

Free access

Sustainable production systems are characterized as systems that can be physically and biologically maintained in perpetuity, can avoid adverse environmental and health problems, and can be economically profitable. Organic vegetable production systems are one example of sustainable farming enterprises. In California, organic production and postharvest handling techniques are closely defined by legislation. Of the several grower groups representing organic farmers in the state, the California Certified Organic Farmers is the largest, representing 382 growers that farmed a total area of 10,375 ha in 1988. Of these, 200 growers are vegetable producers. Another organization active among organic growers in California, as well as Mexico, Central American countries, and the Caribbean, is the Organic Crop Improvement Association. Marketing organizations such as the Nutri-Clean Program, which tests produce for pesticide residues and certifies specific residue standards, and the Organic Market News and Information Service facilitate the sale of organic produce in California. Cultural practice information for organic vegetable production is difficult to find, particularly techniques that would allow a grower to switch from conventional to organic production. University researchers and extension workers have so far been of little help, although the Univ. of California Sustainability Program at Davis is beginning research and education activities. Funding for these activities is inadequate, and the program is understaffed. There is need for long-term, interdisciplinary, on-farm studies to study organic production techniques in a realistic setting. At present, the reward system in place in land-grant institutions offers little encouragement to researchers to engage in this kind of work. There are formidable obstacles to increasing the use of organic materials for crop fertilization. The nutrient content of the state's manure and organic waste supplies is probably insufficient to meet the fertility needs of California's crops. In addition, since the majority of land currently producing vegetable crops in California is leased, long-term soil fertility investments are a risky undertaking.

Free access
Author:

, and Heartland Organic Marketing Cooperative for their support of this research and education program.

Full access

The Center for Environmental Farming Systems (CEFS) is dedicated to farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Department of Agriculture and Consumer Services (NCDACS) Cherry Farm near Goldsboro, N.C.; CEFS operations extend over a land area of about 800 ha (2000 acres) [400 ha (1000 acres) cleared]. This unique center is a partnership among North Carolina State University (NCSU), North Carolina Agriculture and Technical State University (NCATSU), NCDACS, nongovernmental organizations (NGOs), other state and federal agencies, farmers and citizens. Long-term approaches that integrate the broad range of factors involved in agricultural systems are the focus of the Farming Systems Research Unit. The goal is to provide the empirical framework to address landscape-scale issues that impact long-run sustainability of North Carolina's agriculture. To this end, data collection and analyses include soil parameters (biological, chemical, physical), pests and predators (weeds, insects and disease), crop factors (growth, yield, and quality), economic factors, and energy issues. Five systems are being compared: a successional ecosystem, a plantation forestry-woodlot, an integrated crop-animal production system, an organic production system, and a cash-grain [best management practice (BMP)] cropping system. An interdisciplinary team of scientistsfrom the College of Agriculture and Life Sciences at NCSU and NCATSU, along with individuals from the NCDACS, NGO representatives, and farmers are collaborating in this endeavor. Experimental design and protocol are discussed, in addition to challenges and opportunities in designing and implementing long-term farming systems trials.

Full access

Poster Session 12—Organic/Sustainable Horticulture 28 July 2006, 12:00–12:45 p.m.

Free access

A major issue in the preparation of nutrient budgets for organic farmers is the residual nutrient effect from organic amendments available for follow-up crops in year-round rotation systems. A series of separate experiments were conducted to evaluate: 1) the residual nutrient effects on double-cropped sweet corn from initial applications of several organic amendments locally available in Oahu, Hawaii; 2) the residual effect of double cropped zucchini; and 3) mustard cabbage from the application of similar organic amendments. The sweet corn experiment consisted of six treatments, with organic amendments applied only prior to the first planting. The second follow-up sweet corn planting was grown without additional amendment applications. Treatments included: 1) a fruit fly based compost; 2) aged chicken manure; 3) bone meal; 4) synthetic fertilizer (farmer's practice); 5) a combination of compost and fertilizer; and 6) a combination of compost and chicken manure. The experiment was arranged with a randomized complete-block design. Each treatment plot consisted of two 20-m long rows of corn with five replications per plot for a total of 30 treatment plots. On a separate location similar trials were conducted on long-term organic farming plots, with double cropped zucchini and with double cropped mustard cabbage. The results from this research shows that crop yields were similar or greater under the organic amendment plots compared to the synthetic fertilizer plots. In crops with a high N uptake demand, yields from the organic amendment plots declined by about 10% in follow-up plantings. This data will allow organic farmers to prepare nutrient budgets to better match their organic fertilizer applications with crop nutrient demands.

Free access

There is an increasing demand for education in organic and sustainable agriculture from undergraduates, graduate students and extension agents. In this paper, we discuss highlights and evaluations of a multilevel approach to education currently being developed at North Carolina State University (NCSU) that integrates interdisciplinary training in organic and sustainable agriculture and the related discipline of agroecology through a variety of programs for undergraduate students, graduate students, and extension agents. These educational programs are possible because of a committed interdisciplinary faculty team and the Center for Environmental Farming Systems, a facility dedicated to sustainable and organic agriculture research, education, and outreach. Undergraduate programs include an inquiry-based sustainable agriculture summer internship program, a sustainable agriculture apprenticeship program, and an interdisciplinary agroecology minor that includes two newly developed courses in agroecology and a web-based agroecology course. Research projects and a diversity of courses focusing on aspects of sustainable and organic agriculture are available at NCSU for graduate students and a PhD sustainable agriculture minor is under development. A series of workshops on organic systems training offered as a graduate-level course at NCSU for extension agents is also described. Connecting experiential training to a strong interdisciplinary academic curriculum in organic and sustainable agriculture was a primary objective and a common element across all programs. We believe the NCSU educational approach and programs described here may offer insights for other land grant universities considering developing multilevel sustainable agriculture educational programs.

Full access

Work supported in part by a grant from the Organic Farming Research Foundation for a project entitled “Are organic vegetables more nutritious?” and by Initiative for Future Agriculture and Food Systems Grant No. 2001-52101-11431 from the USDA

Full access