Abstract
Flooding is a serious problem in sweet potato production in Atlantic and Gulf Coast states. Studies have been attempted using irrigation to simulate flooding (1, 3). Results have been inconsistent and flood damage was often difficult to induce. However, during 5 days in 1984, Hurricane Diana resulted in 267.5 mm of rainfall on sweet potato cultivar plots at the Horticultural Crops Research Station in Clinton, N.C. The plots were planted in a Norfolk sandy loam soil. When plots were harvested 2 weeks later, flood damage was readily apparent. Typical symptoms of flooding injury included visible soft, rotted areas, growth of saprophytic fungi on the surface and a noticeable odor of fermentation. Roots were separated into three groups (total marketable, culls, and flood-damaged roots) and weighed. Samples were also taken of apparently sound roots for intercellular space and dry matter evaluations (four roots each) and for determining amount of sub-sequent rotting during curing and storing (12–13 kg). Intercellular space and percent dry matter were determined according to Kushman and Pope (2).
In 1984 trees of `Starkspur Supreme Delicious' apple (Malus domestica, Borkh) on 16 rootstocks were planted at 32 sites In Morth America according to guidelines established for cooperative testing by the North Central Regional Cooperative Project (NC--140). Tree loss and root suckering in the Maine planting have been low, similar to that of other sites. Tree size in Maine is smallest amoung all sites after eight seasons. Trees on Budagovsky 9 (B.9) rootstock were the most precocious, producing significantly higher flower numbers and yield in the third year. Other precocious rootstocks in this planting included C.6, M.26EMLA, M.7EMLA and P.l. After eight years, B.9, C.6 and M.26EMLA were the most productive amoung the dwarf trees. P.l and M.7EMLA were the most productive amoung the more vigorous stocks. Heavy croping trees on dwarf rootstocks leaned more due to hurricane winds than larger better anchored trees which lost a larger proportion of their crop. B.9, C.6 and P.1 may have potential as rootstocks for commercial apple orchards in New England.
Effects of crop load on leaf characteristics, shoot growth, fruit shape, fruit quality, and return bloom were investigated in 13-year-old `Ruby Red' grapefruit (Citrus paradisi Macf.) on `Swingle' citrumleo rootstock. Trees were hand thinned in June 2003 and 2004 at the end of physiological fruit drop to establish three to four levels of crop load ranging from normal (high crop load without thinning) to extremely low (near 90% fruit removal). Leaves on high crop load trees had higher net assimilation of CO2 (ACO2) than those on low crop load trees. Crop load enhancement of ACO2 continued until harvest. In 2004, however, the effects were diminished in October just prior to the beginning of the harvest season, after leaf and fruit loss from three consecutive hurricanes. There was no difference in leaf dry weight per leaf area and leaf nitrogen among treatments. Nonfruiting branches of high crop load trees produced fewer, but longer, summer flushes than those of low crop load trees. Fruiting branches generally produced few summer flushes with similar shoot lengths among treatments. High crop load trees developed a greater percentage of vegetative shoots, whereas low crop load trees developed more inflorescences. Crop load adjustments did not affect fruit size and total soluble solid content, but low crop load trees produced a higher percentage of irregular shape (sheepnosed) fruit with high acidity.
The soil in south Miami–Dade Co., Fla., consists of 4 to 6 inches of scarified limestone, officially a “very gravelly loam”. The bedrock reaches the surface; with little weathered material or organic matter. Heavy equipment is used to break up the rock, and a rock plow is used every few years to prevent re-compaction. Street trees in swales are installed in shallow holes dug in the rock and back-filled with crushed limestone. Golden trumpet tree, or yellow tab, Tabebuia chrysotricha, and copperpod, Peltophorum pterocarpum, are deciduous, tropical trees of medium size. Both are popular throughout south Florida because they produce spectacular displays of yellow flowers before the leaves emerge in the spring. When planted on rockland soil, both species present maintenance problems which suggest that they may not be good choices for use as street trees. In Summer 2005, after three hurricanes, both species were evaluated for long-term survival. Of 246 Tabebuia, 26% fell, 18% leaned (or 45% damaged), and 25% were missing, having been destroyed in previous years. Only one was broken, the rest fell due to root failure. Six large trees growing near buildings were standing. It appears that yellow tab is not a good street tree in rockland, not even for the short-term. Of 142 Peltophorum, 23% fell, 3% leaned (or 26% damaged), and 4% were missing. Due to an umbrella-like branching pattern, 15% had branches broken on the street side, caused by vehicles, not wind. Though it sustained only half the wind damage of yellow tab, copperpod is not a good street tree, due to poor branching patterns.
The development of best management practices (BMP) and the alloca-tion of pollution among land users in a watershed (TMDL) requires an understanding of the effect of cultural practices on both yields and nutrient leaching below the root zone. `Florida 47' tomato and `La Estrella' tropical pumpkin were grown on plasticulture using combinations of UF–IFAS recommended N and irrigation rates in a 1-ha field in 2004. Average N and irrigation rates over the whole field were 100% and 80%, respectively. Nitrate movement was assessed with twenty-four 1-m-long drainage lysimeters in each plot and ten 7-m-deep wells in and around the field Lysimeters and wells were sampled every 2 and 3 weeks throughout the year, respectively. Leachate volume and concentration in the drainage lysimeters were highly variable. Except shortly after the 25-cm rain due to hurricane Jeanne, most leachate volumes were <1 L·m–1. Annual NO3-N mean treatment load ranged between 7 and 15 kg·ha–1, but these differences were not significant due to high variability (CV = 175%). Single-lysimeter annual highest load was 39 kg·ha–1 of NO3-N (17.5% of N applied). In 2004, NO3-N concentration in well water was <1, ranged between 15 and 35, ranged between 0 and 10 mg·L–1 NO3-N in the up-stream control, inside, and perimeter wells, respectively. These concentrations are in the same ranges as those observed in this field in previous years (1997–2003) and often exceeded the 10 mg/L drinking water standard. Because NO3-N discharge into the environment may occur after the growing season, BMPs should be implemented on a year round basis. The methodology used in load measurement should be improved to better account for spatial variability.
Landscape trials were conducted to evaluate 235 cultivars within 66 species in central Mississippi. All entries were grown from seed or vegetatively propagated material. Raised landscape beds were prepared using accepted regional methods. Planting into beds began on 4 April and was completed on 20 April. Plants were given an overall rating based on insect resistance, disease resistance, vigor, flowering, and foliage color. Each cultivar was rated bimonthly until early August when pruning or termination was necessary, depending on each cultivar, at which time rating frequency became once a month through the first freeze. The rating range was 0 to 5, where 5 is optimum and 0 is death. Height (cm) was measured for each cultivar at the same intervals as performance ratings. Heights were recorded to show the average height of each cultivar. No herbicides were applied; handweeding controlled weeds. No insecticides were applied to plants with the exception of the hibiscus where there was severe pressure from sawfly larva. In 2005 central Mississippi experienced a very hot and dry summer. Strong winds and heavy rains in late August and early September associated with Hurricanes Katrina and Rita took their toll on the trial, especially many of the taller cultivars. The top performing cultivars for 2005 were `Intensia Lilac Rose' phlox (Phlox ×), Proven Winners; `Intensia Neon Pink' phlox (Phlox ×), Proven Winners; `Elliottii Wind Dancer' grass (Eragrostis curvula), Pan American Seed; `Intensia Lavender Glow' phlox (Phlox ×), Proven Winners; `Dolce Licorice' heuchera (Heuchera ×), Proven Winners; `Diamond Frost' euphorbia (Euphorbia ×), Proven Winners; `Gold Flake' mecardonia (Mecardonia ×), Proven Winners; `Titan Polka Dot' annual vinca (Catharanthus roseus), Ball Seed; `Sun Fan' scaevola (Scaevola aemula), Proven Winners; `Golden Delicious' salvia (Salvia elegans), Proven Winners.
Safety training for farm, nursery and landscape workers has been provided in Miami-Dade County in English and Spanish for many years. Vegetable workers are available August–September; nursery, landscape and tropical fruit workers all year. Certificates of Completion and proof of training cards are provided. Traditionally, a half-day rodeo was offered—instructors delivered presentations several times as participants move from room to room. 4 to 6 agents and 2 to 4 volunteers are needed to teach such training, plus 8 to 10 classrooms. 100+ vegetable and nursery workers participate. A local school was used for many years, with training scheduled when school was out. A tractor driving competition was held after lunch, with trophies and cash prizes. As scheduling the school became difficult, training was offered at the CES office using one room and 2 agents (Spanish in am, English in pm). This is easier to arrange and can be offered any time of year. In total, 40–50 nursery workers attend. A third type of training developed as topics were requested by the industries; for example, chainsaw and climbing safety for tree crews. One agent and one volunteer are required; 50 or more participate, and class is in English. Safety is also taught as part of other seminars, required by law (pesticide applicator training, Worker Protection Standard), trade organizations (landscape, nursery, arborist) or county policy (hurricane pruning for public employees). Participation varies widely (15 to 100+), as does language. We have concluded that successful safety training depends on being willing and able to offer the type of training required by a given situation, which will change over time.
Mini or “baby” vegetables have become increasingly popular items for restaurant chefs and retail sales. Squash (Cucurbita pepo) are generally open-field cultivated where climate, insect, and disease pressures create challenging conditions for growers and shippers who produce and market this delicate, immature fruit. In order to overcome these challenges, in Spring 2003 and 2004, 18 squash cultivars, including zucchini, yellow-summer, patty pan/scallop, and cousa types, were grown hydroponically in a passively ventilated greenhouse and compared for yield of “baby”-size fruit. Squash were graded as “baby” when they were less than 4 inches in length for zucchini, yellow-summer, and cousa types and less than 1.5 inches diameter for round and patty pan/scallop types. In both seasons, `Sunburst' (patty pan) produced the greatest number of baby-size fruit per plant, while `Bareket' (green zucchini) produced the least. The zucchini-types produced between 16 and 25 baby-size fruit per plant in 2003. The yellow summer squash-types produced on average 45 baby fruit per plant. The production of the patty pan/scallop types ranged from 50 to 67 baby-size fruit per plant depending on cultivar. The cousa types produced approximately 30 baby-size fruit. Total yields were lower in 2004 due to a shortened season. Squash plants will produce numerous high quality baby-sized fruit when grown hydroponically in a reduced pesticide environment of a greenhouse where they can be harvested, packaged, and distributed to buyers daily. The cultivars Hurricane, Raven, Gold Rush, Goldy, Sunray, Seneca Supreme, Supersett, Butter Scallop, Sunburst, Patty Green Tint, Starship, Magda, and HA-187 could be used for hydroponic baby squash production.
Seacoast marshelder (Iva imbricata) is an important coastal species contributing to building of foredunes along the Gulf of Mexico coastal regions. Hurricane activity disrupts natural regeneration, and the need for successful nursery production of sufficient plants for restoration warrants development of efficient propagation and production practices for restoration efforts. The objectives of these experiments were to investigate the effects of stock plant fertility on cutting production of seacoast marshelder and to evaluate the rooting qualities of cuttings harvested from hedged stock. Stock plants were established in 1-gal containers using a pine bark substrate amended with 6 lb/yard3 dolomitic limestone. Plants were fertilized with 15N–3.9P–10K controlled-release fertilizer (Osmocote Plus, 8- to 9-month formulation at 21 °C) applied as a top dressing at the recommended full label rate of 11 g per pot and 5.5, 15, and 21 g per pot (12 pots each) using a completely randomized design. Cuttings were collected and stock plants hedged on a regular interval [Expt. 1 (May to August) and Expt. 2 (August to November)]. Hedging of stock plants reduced height to 20 cm after each successive harvest of cuttings, but stock plant growth index increased with each successive harvest. Stock plant growth and cutting production increased as fertility rate increased, but responses were not consistent across harvest times. This trend was also true for rooting percentage and measures of root quality. Seacoast marshelder stock plant size increased as fertility increased to 15 g but not at 21 g. Inconsistencies in rooting responses across the production period were evident and were attributed to seasonal growth effects. An inverse relationship between rooting percentage and fertility rate was evident from May through July suggesting high levels of fertility should be avoided because rooting percentage, root number, and root length were reduced as fertility rate increased during that time. Conversely, higher fertilizer rates had a neutral to positive effect on rooting of seacoast marshelder during the months of August through November.
Hurricane Damage to Tomato Crop in Southern Florida Hurricanes cause damage to crops and infrastructure, and displace labor and markets in Florida. Several experiments were conducted to understand the types of plant damage and potential yield