) (Agusti et al., 1998; Fernandez-Escobar et al., 1987 ) and loquat ( Eriobotrya japonica) ( Agusti et al., 2005 ). However, bark girdling may impair trees and vine health if callusing is slow or inadequate ( Fallahi et al., 2017 ; Fernandez-Escobar et al
evaluate the effect of storage duration, storage temperature, and filtration before storage on pH, EC, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), and nutrient ion concentrations of PT samples of pine bark– and peat-based substrates
Nursery producers create their own substrates by mixing two or more components. Components are often regional and based on available resources local to the nursery operation. Outdoor container nurseries use bark as the primary component mixed with
Abstract
The pistachio (Pistacia vera L.), characteristically a biennial bearer, produces its most extensive shoot growth in years of heavy crop production. Whereas levels of total sugars in bark and wood of bearing and nonbearing branches were similar throughout the year, starch levels tended generally to be higher in nonbearing than in bearing branches. Consequently, nonbearing branches one year gave rise to heavy crops the next and, beacuse of greater quantities of reserve foods, also produced extensive shoot growth. Bearing branches of that same year, .however, produced few or no nuts the next and, because of lesser quantities of reserve foods, produced markedly less shoot growth. No relationship between total nitrogen level and shoot growth or fruiting was evident.
Abstract
Physical properties of various hardwood bark-soil mixes for containers were compared to a soil-peat-perlite mix. Bark-soil mixes containing a wide range of bark particle sizes were found to possess superior physical properties initially and remained satisfactory after a 13-month incubation period. However, bark-soil mixes were much less stable and deteriorated to a significantly greater extent. For golf greens, physical properties of hardwood bark or peat and soil and sand mixes were studied following compaction at 40 cm moisture tension. Initially, the bark mixes were superior and this was postulated to be due to a more uniform distribution of bark within the mixes. Based on the deterioration that occurred in bark-soil mixes for containers, it is concluded that use of hardwood bark in golf green mixes does not appear feasible.
Crapemyrtle bark scale [CMBS ( Acanthococcus lagerstroemiae )] is a sap-sucking hemipteran native to some Asian countries ( Kozár et al., 2013 ). Since initially detected and identified in Texas in 2004 ( Merchant et al., 2014 ), the CMBS has
). Of these, research and development of new substrates to replace conventionally used peatmoss and pine bark (PB) substrates have increased in recent years. In addition to developing and using new substrates, much work has focused on managing fertility
Abstract
This study was conducted to determine the availability of N from urea applied to a pine bark container medium. Results showed that negligible amounts of urea are adsorbed to a pine bark medium compared to NH4-N. However, 71% of the urea applied was hydrolyzed to NH4 within 24 hr and 95% within 40 hr. The rapid hydrolysis would allow N from urea to be available for plant uptake or adsorption to bark soon after application, making urea an acceptable source of N for a pine bark medium.
Beginning in the early 1970s, the search for organic soilless substrates for container production has been an important horticultural research topic with the introduction of hardwood and softwood barks as the primary component in nursery container
diffusion across concentration gradients, and the interaction with bark particle exchange sites ( Hoskins et al., 2014a ). Therefore, biochar may influence nutrients leaching from a soilless substrate. Biochar can have a substantial impact on the release and