Search Results

You are looking at 41 - 50 of 711 items for :

  • "sandy loam" x
Clear All
Free access

John R. Clark and James N. Moore

The southern highbush blueberry cultivars `Blueridge', `Cape Fear', `Georgiagem' and `O'Neal' were evaluated for their response to sawdust/woodchip mulch for five years at Clarksville, Arkansas on a Linker fine sandy loam soil. Mulched plants produced higher yields and larger plant volumes than non-mulched. Berry weight was similar for mulch treatment except for the first fruiting year. All cultivars responded to mulch, although `Blueridge' and 'Cape Fear' produced the higher yields. General response of these cultivars of southern highbush was similar to that of northern highbush in previous mulch studies in Arkansas.

Free access

V. A. Khan, C. Stevens, J. Y. Lu, M. Kabwe and Z. Haung

Clear (CM) and black (BM) plastic mulch and bare soil (BS) plus VisPore (V) row cover (VCM, VBM, VBS), BM, CM and BS in combination with drip irrigation were used to evaluate the growth response of these treatment combinations on 5 and 9 wks old `Clemson Spineless' okra transplants grown in sandy loam soil. Mulched treatments significantly increased the survival rate of 5 wks old transplants while VCM and VBM treatments increased significantly the number of vegetative branches of 5 wks over 9 wks old transplants. Total and marketable yield, as well as total and marketable number of pods were significantly influenced by mulched treatments rather than by the age of transplants.

Free access

Adán Fimbres Fontes, Raúl Leonel Grijalva Contreras and Manuel de Jesus Valenzuela Ruiz

The area of olives in the region of Caborca has been increasing in the last years to 4500 ha. Olives in other regions do not need the application of water, at Caborca evaporation is greater than rainfall. Because of that situation, an experiment was conducted in 1998 to determine the optimum water requirements and the crop coefficient for `Manzanillo' olives (2 years of planted) under drip irrigation and microsprinkler in a sandy loam soil. The results indicated no difference between treatments (50%, 75%, and 100% of ET estimated in a pan evaporation). The water applied to each treatment was 13.32, 19.98, and 26.64 cm.

Free access

S.J. Locascio, F.M. Rhoades, S.M. Olson, G.J. Hochmuth and E.A. Hanlon

Tomato (Lycopersicon esculentum Mill.) was grown with drip irrigation on a fine sand and on a fine sandy loam to evaluate the effect of N and K time of application on yield. On the sandy soil, 196–112 kg of N–K/ha was applied with 0%, 40%, or 100% preplant with 100% or 60% applied in six or 12 equal or in 12-week variable applications. Marketable fruit yields were lowest with 100% preplant, intermediate with 100% drip-applied, and highest with 40% preplant with 60% drip-applied. With 100% drip-applied, yields were highest with 12 even than with six even weekly applications or with 12 variable N and K applications. With the 40% preplant, timing of application had little effect on yield. On the sandy loam soil in 1993, where only N was applied (196 kg·ha–1), yields were highest with 100% preplant, intermediate with 40% preplant and 60% drip-applied, and lowest with all N drip-applied. In 1994, when excessive rains occurred, yields were similar with all preplant and with split-N applications.

Free access

Donita L. Bryan, W. Todd Watson, Leonardo Lombardini, John J. Sloan, Andrew D. Cartmill, Geoffrey C. Denny and Michael A. Arnold

Tree transplanting practices influence plant survival, establishment, and subsequent landscape value. However, transplanting practices vary substantially within the horticultural industry. Of particular importance is the location of the root collar relative to soil grade at transplant. The objective of this study was to determine the effects of factorial combinations of planting depths, root collar at grade or 7.6 cm either above or below grade, and soil amendments on container-grown (11 L) Quercus virginiana Mill. Soil treatments included a tilled native soil (heavy clay loam, Zack Series, Zack-urban land complex, fine, montmorillonitic, thermic, udic paleustalfs), native soils amended with 7.6 cm of coarse blasting sand or peat that were then tilled to a depth of 23 cm, or raised beds containing 20 cm of sandy loam soil (Silawa fine sandy loam, siliceous, thermic, ultic haplustalfs). A significant (P ≤ 0.05) block by soil amendment interaction occurred for photosynthetic activity. Incorporation of peat significantly decreased the bulk density of the native soil. Planting depth had no significant effect on photosynthetic activity or stem xylem water potential at 3 months after transplant. Soil water potentials did not statistically differ among treatments.

Free access

Georges T. Dodds, Leif Trenholm, Ali Rajabipour, Chandra A. Madramootoo and Eric R. Norris

In a 2-year study (1993-94), tomato (Lycopersicon esculentum Mill. `New Yorker') plants grown in a sandy loam soil in field lysimeters were subjected to four water table depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface). In 1994, precipitation during the flowering stage was far above average and apparently led to waterlogging in the shallowest WTD treatment, while in the drier year (1993), the deepest WTD treatment suffered from drought stress. In general, over the 2 years, the 0.6-m WTD showed the best yields and largest fruit, while the 1.0-m WTD showed the lowest yields and smallest fruit. However, the incidence of catfacing, cracking, and sunscald was generally higher in the 0.6 m WTD treatment and lower in the 1.0-m WTD treatment. Furthermore, fruit firmness was generally greatest for the two deeper WTD than for the shallower WTD. To strike a balance between yield and quality, a WTD of between 0.6- and 0.8-m is recommended for tomato production on sandy loam soils.

Free access

Nektarios Panayiotis, Tsiotsiopoulou Panayiota and Chronopoulos Ioannis

Four substrates were investigated for their efficacy as roof garden vegetative layers. The substrates comprised a sandy loam soil (S), sandy loam soil amended with urea formaldehyde resin foam (S:F) in a proportion of 60-40 v/v, sandy loam soil amended with peat and perlite (S:P:Per) in a proportion of 50-30-20 v/v and peat amended with urea formaldehyde resin foam (P:F) in a proportion of 60-40 v/v. The substrates were evaluated for their physical and chemical properties and their capacity to sustain growth of Lantana camara L. Physical and chemical evaluation included weight determination at saturation and at field capacity, bulk density determination, water retention, air filled porosity at 40 cm, pH and EC. When compared to the control (S) a weight reduction of 16.8%, 23.9% and 70.3% was obtained at field capacity with S:F, S:P:Per and P:F substrates respectively. Bulk density was reduced by 46%, 43% and 95%, in substrates S:F, S:P:Per and P:F, respectively, compared to the control substrate S. Air-filled porosity at 40 cm was slightly increased for substrate S:F while it was substantially increased for substrate P:F. The pH response between the initiation and the termination of the study was similar for the four substrates. EC decreased in substrates S and S:P:Per but increased in substrates S:F and P:F. Plant growth was monitored as shoot length, shoot number, main shoot diameter and the number of buds and flowers. Substrates S and S:F resulted in similar plant growth, while substrate S:F promoted flowering. Substrate S:P:Per induced slow plant growth during the first 6 months which subsequently increased resulting in a final growth that was satisfactory and comparable to the S and S:F substrates. Substrate P:F did not support sufficient plant growth and its use should be considered only in special cases where reduced weight of the roof garden is imperative.

Full access

Donald R. Hodel, Peter J. Beaudoin, A. James Downer and Dennis R. Pittenger

In a study in southern California, five species of palms [king palm (Archontophoenix cunninghamiana), mediterranean fan palm (Chamaerops humilis), queen palm (Syagrus romanzoffiana), windmill palm (Trachycarpus fortunei), california fan palm (Washingtonia filifera)] grown in 1-gal containers were planted in 12 × 12 × 12-inch holes in sandy loam (five species) and in clay loam (two species) with the backfill amended using a commercially available, composted, nitrogen-stabilized douglas fir (Pseudotsuga menziesii) shavings product incorporated at 0%, 25%, and 50% by volume. After 18 months, all palms were fully established. Crown volume, stem diameter, visual quality, quantity of new leaves produced, and percent total nitrogen, potassium, and magnesium in leaves did not differ significantly among the three treatments for all species or among treatments within a species. Thus, in this study there was no benefit from amending the backfill with this type of organic amendment when planting palms.

Free access

Nicolas Tremblay, Marie-Hélène Michaud, René Crête and André Gosselin

With the increase in popularity of natural medicine there is an ever growing market for the production of medicinal plants. In the last decade, screening trials of a number of species were conducted. The species currently under study are: angelica (Angelica archangelica; biennial, roots harvested), thyme (Thymus vulgaris; perennial, shoot harvested), German chamomilla (Matricaria recutita; annual, flowers harvested), horehound (Marrubium vulgare; perennial, shoot harvested) and dandelion (Taraxacum officinale; considered as a biennial, roots harvested). In 1990 the species were grown on three soil types (clay-loam, sandy loam and histosol) with different fertilization and irrigation practices. In 1991 two distinct trials were undertaken. The first considered herbicide efficiency and planting density. The second dealt with «organic» management strategies. Depending on the species, treatments of compost amendment, plastic mulch and implantation techniques were compared.

Free access

Mack A. Wilson and Michael Aide

Four types of row covers were evaluated on 'Norchip' and 'Atlantis' potatoes at Charleston, Missouri on a Lilbourn sandy loam entisol. Row covers used were spun-bonded polyester, insolar slitted, clear slitted and VisPore. The row covers increased the mean afternoon soil temperature above the ambient afternoon air temperature from 3 to 25°F when potato plants were covered. The number of plants which emerged were significantly different among treatment for the cultivar 'Norchip'. Data for plant height was significantly different between the bare soil control and the row cover treatments. Yield (Kg/HA) were higher with the spunbonded polyester and insolar slitted row covers for both number and weight of grade A (47.6-82.6 mm) potatoes, and results were significantly different.