Search Results

You are looking at 41 - 50 of 71 items for :

  • " V. darrowi " x
Clear All

Pollen from six southern highbush blueberry cultivars derived from Vaccinium corymbosum L. and one or more other species (V. darrowi Camp, V. ashei Reade, and V. angustifolium Aiton) was incubated on nutrient agar to determine tetrad viability, pollen tube growth rates, and incidence of multiple pollen tube germinations. `Avonblue' pollen had a significantly lower tetrad germination percentage than `Georgiagem', `Flordablue', `Sharpblue', `Gulfcoast', or `O'Neal', all of which had >90% viable tetrads. The in vitro growth rate of `O'Neal' pollen tubes was significantly higher than the growth rates of `Sharpblue' and `Georgiagem pollen tubes. Of those tetrads that were viable, more than two pollen tubes germinated from 83% and 91% of the `Gulfcoast' and `Sharpblue' tetrads, respectively, while only 11% of the `Flordablue' tetrads produced more than two pollen tubes. The total number of pollen tubes germinated per 100 tetrads ranged from 157 (`Flordablue') to 324 (`Sharpblue'), resulting in actual pollen grain viabilities ranging from 39% to 81%. Genetic differences in pollen vigor, as indicated by pollen viability, pollen tube growth rates, and multiple pollen tube germinations, may influence blueberry growers' success in optimizing the beneficial effects of cross-pollination on fruit development.

Free access
Author:

Diploid blueberry (Vaccinium section Cyanococcus) was pollinated in a greenhouse in 1981 with pollen from sparkleberry (V. arboreum, Section Batodendron). Cyanococcus parents included V. darrowi, diploid V. corymbosum, and various intra-sectional diploid hybrids. Forty one vigorous seedlings showing characteristics of both sections were selected from a field nursery when 2 ½ years old. Some of these plants flowered heavily in subsequent years, and several were more than 3 m tall by 1990. Although the F1 hybrids had very low fertility, some open-pollinated progeny were obtained. Some of these were vigorous, fruitful when open-pollinated in the field, and intermediate between V. arboreum and Cyanococcus in many features. Six of the best progeny from open-pollination of the F1's were used in greenhouse crosses. Some branches were self-pollinated and some were pollinated with pollen from tetraploid V. corymbosum -based cultivars. Two of the 3 selfed plants had a high percent fruit set (277 fruit from 441 flowers). Four of the six plants pollinated with pollen from tetraploid V. corymbosum cultivars had high percent fruit set (452 fruit from 793 flowers). Flowers of the open-pollinated progeny of the F1 hybrids were much larger than those of the F1 `s. This, along with the fruitfulness after 4× pollination, suggests that at least some of the open-pollinated progeny are tetraploid. These hybrids give hope that sparkleberry genes can be used to improve highbush cultivars.

Free access

Abstract

Vaccinium species collected from the eastern United States were grown and fruited at Castle Hayne, N.C. Harvest season extended from 5 June to 22 Aug. Vaccinium angustifolium Ait. was earliest ripening. Vaccinium myrtilloides Michx., V. elliotti Chap., diploid V. corymbosum L., and tetraploid V. pallidum Ait. populations also contained very early- to early-ripening seedlings. Early-ripening seedlings were not observed in tetraploid V. corymbosum populations and reached peak ripeness around mid-June, about with ‘Bluecrop’. One tetraploid V. corymbosum population continued ripening into early August. Vaccinium ashei Reade populations from Georgia began ripening about 2 weeks earlier than Florida V. ashei or Arkansas V. amoenum Ait. populations. One Georgia V. ashei population was only slightly later than tetraploid V. corymbosum. The Florida V. ashei populations continued ripening into late August. The diploid species V. darrowi Camp, V. tenellum Ait., and V. stamineum L., were all basically late in ripening. The potential utility of these species in breeding for both early- and late-ripening Vaccinium genotypes is discussed.

Open Access

Interspecific blueberry (Vaccinium spp.) progenies were examined to determine combining abilities and genetic variability for seedling root system size and shoot vigor and to establish whether a large root system is correlated with good growth when plants are grown on a mineral soil and exposed to a moderate soil water deficit. General combining ability (GCA) variance components for root system size and shoot vigor and specific combining ability variance components for shoot vigor were significant. US226, a tetraploid hybrid of V. myrtilloides Michaux × V. atrococcum Heller, had the highest GCA effect for root system size and the lowest GCA effect for shoot vigor. US75 (V. darrowi Camp × V. corymbosum L.) had the highest GCA effect for shoot vigor and was second in GCA effect for root system size. Comparison of the crosses containing G111 (V. corymbosum) with those containing G362 (V. corymbosum) indicates that selecting for the best V. corymbosum clone to start a breeding program seems as important as selecting the mineral soil-adapted parent. Root system ratings were highly correlated with total dry weight of field-grown plants (r = 0.89). The method used in this study to evaluate seedlings for root system size and shoot vigor could be used to eliminate the less vigorous plants from a population before field planting and to evaluate mineral soil adaptability.

Free access
Author:

Abstract

Bulk A horizon samples of 4 soils, with or without the addition of peatmoss, and 5 blueberry crosses were used in a study of the adaptability of blueberries to upland soil conditions under 3 fertilization regimes and trickle irrigation in outdoor pots. Blueberry progenies ranged from essentially pure highbush (Vaccinium corymbosum L.) to interspecific hybrids containing varying amounts of evergreen (V. darrowi Camp), lowbush (V. augustifolium Aiton), black highbush (V. atrococcum Heller), and rabbiteye (V. ashei Reade) blueberry germplasm. Blueberry growth, as measured by plant volume, initially was greatest on Manor clay loam, a Piedmont soil high in clay (30%), but by the 2nd growing season, growth was superior on Berryland soil. Various fertilizer sources affected small differences in growth. Generally those progenies that contained less highbush (V. corymbosum) parentage produced more vigorous growth. Depth of rooting and estimated root distribution were affected significantly by soil, but the addition of peatmoss had no consistent effect. Berryland sand and Manor loam soils, which represent extremes in clay content, both produced the deepest root systems. Fruiting and fruit characteristic data from the 2nd growing season indicated a significant effect of peatmoss on the Pope and Galestown soils, which resulted in lowered total fruit acidity. The Berryland soil produced fruit with the lowest total acidity. Blueberry plant growth over the first 2 seasons indicates that soil type can have pronounced effects on plant growth and rooting. These growth differences were due to soil characteristics other than particle size distribution, with fertilizer source having minimal effects on growth.

Open Access
Author:

Abstract

A range of soils, with or without the addition of peatmoss, and seedlings of blueberry progenies were used in an outdoor pot study to examine the adaptability of blueberries to upland soil conditions with controlled fertilizer additions and trickle irrigation. Blueberry progenies ranged from essentially pure highbush (Vaccinium corymbosum L.) to interspecific hybrids containing varying amounts of evergreen (V. darrowi Camp), lowbush (V. angustifolium Aiton), black highbush (V. atrococcum Heller), and rabbiteye (V. ashei Reade) blueberry germplasm. The soils represented the 3 physiographic regions of the eastern United States with Berryland sand used as a comparative control. Leaf analysis for N, P, K, Ca, and Mg showed significant effects of soil, but no consistent effect of peatmoss addition or fertilizer source in the 2 years of the experiment. There were significant differences among progenies. Foliar Fe, B, Al, Zn, and Cu concentrations varied independent of soil material, progeny, or fertilizer source. Leaf Mn was significantly increased from solid 10N-4P-8K fertilizer and a significant soil by progeny interaction existed. Those progenies containing some V. angustifolium tended to have increased foliar Mn levels. The reduced vigor of the blueberry progenies grown on soils other than the Berryland sand was tentatively ascribed to induced nutrient imbalances, involving Ca, Fe, and Mn, possibly being governed by soil cation exchange capacity and organic matter reactivity.

Open Access

Abstract

To determine if the net CO2 assimilation and water use efficiency (WUE) of highbush blueberry under high temperature can be improved genetically, gas exchange determinations were made for a selection of Vaccinium darrowi Camp (Florida 4B), a highbush cultivar (Bluecrop) (V. corymbosum L.), their F1 hybrid (US75), and two crosses of the F1 hybrid to another improved genotype (US239 and US245). All genotypes responded parabolically to increasing temperature at vapor pressure deficits <1 kPa. Maximum CO2 assimilation of US75 (15 µmol·s–1·m–2) was 30% to 40% higher than either parent. Carbon dioxide assimilation of US75 and Florida 4B was optimum at 30°C and that of ‘Bluecrop’ at 20°. The optimum for US239 was similar to ‘Bluecrop’, and that of US245 to Florida 4B. Florida 4B had higher WUEs than ‘Bluecrop’ at both 20° (5.64 µmol CO2/mmol H2O to 4.01) and 30° (3.73 to 2.53). US239 and US245 had significantly (P < 0.05) higher WUEs at 30° than did ‘Bluecrop’. Residual conductance to CO2 (gr) decreased in ‘Bluecrop’ when temperature was raised from 20° to 30°, but increased in all other genotypes. Due to the favorable gas exchange properties of US75 and US245 at 30°, we suggest that the high temperature tolerance of V. darrowi may be heritable and that US245 may be used to improve the heat tolerance of highbush blueberry.

Open Access
Author:

Most genetic variation in blueberries is quantitative. However, after a decade of exploration among Florida's native blueberry populations and more than 100,000 seedlings grown in nursery plots, several qualitative variants have been found. An allele for anthocyanin-free foliage in Vaccinium elliottii is recessive to wildtype. A second recessive allele at a different locus in the same species depletes anthocyanin in the fruit but not the foliage. A recessive allele in V. ashei produces white, pink, or purple berries when homozygous, the color depending on the clone that is made homozygous for the allele. A dominant allele in V. darrowi produces pink fruit and is nonallelic with the fruit anthocyanin deficiency allele in V. elliottii. Two V. elliottii clones with a weeping to prostrate growth habit have been found in west Florida. This phenotype is maintained by clonal propagation, but its inheritance has not been determined. A V. ashei plant with compact growth habit transmits this phenotype to a small percentage of its F-1 progeny when crossed with most V. ashei cultivars.

Free access

Variability in sucrose levels and metabolism in ripe fruit of several Vaccinium species were examined. The objective was to determine if sufficient variability for fruit sucrose accumulation was present in existing populations to warrant attempts to breed for high-sucrose fruit, which potentially would be less subject to bird predation. Three-fold differences in fruit sucrose concentration were found among species, ranging from 19 to 24 mg·(g fw)-1 in V. stamineum and V. arboreum to about 7 mg·(g fw)-1 in cultivated blueberry (V. ashei and V. corymbosum) and V. darrowi. Soluble acid invertase activity was negatively correlated with fruit sucrose concentration. There was no apparent correlation between fruit sugar concentration and either sucrose phosphate synthase or sucrose synthase activities, both of which were low for all species studied. The degree of variability in fruit sucrose accumulation among Vaccinium species supports the feasibility of developing high sucrose fruit, which would be a potentially valuable addition to current strategies of minimizing crop losses to birds.

Free access
Authors: and

The organic acid composition of blueberries of three highbush (Vaccinium corymbosum) cultivars, three rabbiteye (V. ashei cultivars and nine southern highbush (V. corymbosun hybrids) cultivars or selections was determined by HPLC. Species means off the individual acids (citric, malic, succinic, and quinic), expressed as a percentage of total acid, formed profiles or patterns that are thought to be characteristic of the species. Citric (75%) was the predominant acid in highbush fruit with lesser percentages of succinic (13%), quinic (9.6%), and malic (2.7%). The percent composition of rabbiteye berries [quinic (49%), succinic (39%), citric (6.7%), malic (5%)] was distinctly different from highbush. The acid profile of southern highbush fruit reflected their V. corymbosum heritage with an acid profile similar to that of highbush. When related to a clone's pedigree, these results suggest that organic acid profiles may be a useful screening tool for studying the contribution of southeastern native species such as V. darrowi or V. ashei to the inheritance of organic acids.

Free access