Search Results

You are looking at 31 - 40 of 1,057 items for :

  • Capsicum annuum x
Clear All
Author:

Abstract

Foliar sprays of dikegulac-sodium (sodium salt of 2,3:4,6-bis-0-(1-methylethylidene)-alpha-L-xylo-2-hexulofuranosonic acid) at 722 and 2888 ppm and hand-pinching significantly increased branching of chili pepper cultivars ‘Sandia’, ‘NM 6’, and ‘Espanola 1’ (Capsicum annuum L.). Both dikegulac-sodium concentrations were equally effective in increasing branching. Hand-pinching and dikegulac-sodium at 722 ppm did not influence plant height. Dikegulac-sodium at 2888 ppm significantly reduced plant height. Hand-pinching and dikegulac-sodium at 722 ppm delayed first harvest by 9 days. Dikegulac-sodium at 2888 ppm delayed first harvest by 34 days. Dikegulac-sodium at 5053 ppm resulted in death of treated plants. All concentrations of dikegulac-sodium decreased yield.

Open Access

Anthers from more than 17000 flowers of 19 bell pepper Capsicum annuum L. hybrids (provided by `Semillas Fitó S.A.') were cultured in a double layer modified H medium (Nitsch and Nitsch, 1969) supplemented with 0.5 % activated charcoal and 0.26 % Gelrite in the solid phase. Significant differences between genotypes were observed on embryogenesis (472.3 to 9.7 embryos / 100 flowers) and number of plants rescued (4.0 to 0.3 plants / 100 flowers). Trying out maltose, malt extract, and sucrose. as carbohydrates, at 20, 40, 60 or 80 g/l, gave significantly better results for maltose (20 or 40 g/l). In addition, maintaining the anther cultures in an atmosphere enriched with 600 ppm CO2 was beneficial for embryo number, embryo development and number of rescued plants. Isocitrate dehydrogenase zymograms from leaf extracts indicate the microspore origin of the acclimated plants. Flow citometry of nuclei was used to determined an early diploidization of 70 % of the acclimated plants.

Free access

Abstract

Flooding of bell pepper (Capsicum annuum L.) for 96 hr at anthesis adversely affected plant growth. Average leaf size of the flooded plants was significantly less than that of nonflooded controls. Ratios of leaf dry weight to root dry weight indicated that flooding reduced root development more than leaf development. Mean photosynthetic rate over the 96-hr flooding period and the 72-hr post-flooding period was decreased by 62%. Viability, germination percentage, and average weight of seeds from flooded plants were significantly less than those of control plants. Pepper photosynthetic rate was correlated with seed weight, seed viability, and germination percentage. Reductions in seed viability as a result of soil flooding may, therefore, be attributable to reductions in the supply of photosynthates to the seed.

Open Access
Authors: , , and

To test the effectiveness of different bioregulators in enhancing bell pepper (Capsicum annuum L.) yield and fruit quality, the commercial bioregulators CCC, NAA, GA3, and Biozyme® were sprayed on plants at flower initiation, followed by two additional applications at 30-day intervals. Biozyme produced a significant increase in total yield but ≈40% of the fruit were not marketable. Treatment with NAA produced the highest yield of marketable fruit. Treatments did not affect fruit firmness compared to the control. Gibberellic acid increased fruit ascorbic acid and citric acid concentrations and Biozyme, GA3, and CCC increased fruit soluble solids content. Biozyme treatment increased fruit fructose, sucrose, carotenoid, and lycopene concentration. Treatments had no effect on fruit calcium concentration or pH. Chemical names used: chlormequat chloride (CCC); naphthaleneacetic acid (NAA), gibberellic acid (GA3); GA3 + IAA (indoIe-3-acetic acid) + zeatine + micronutrients (Biozyme®).

Free access

Despite extensive breeding efforts, no pepper (Capsicum annuum L. var. annuum) cultivars with universal resistance to phytophthora root rot and foliar blight (Phytophthora capsici Leon) have been commercially released. A reason for this limitation may be that physiological races exist within P. capsici, the causal agent of phytophthora root rot and phytophthora foliar blight. Physiological races are classified by the pathogen's reactions to a set of cultivars (host differential). In this study, 18 varieties of peppers were inoculated with 10 isolates of P. capsici for phytophthora root rot, and four isolates of P. capsici for phytophthora foliar blight. The isolates originated from pepper plants growing in New Mexico, New Jersey, Italy, Korea, and Turkey. For phytophthora root rot, nine of the 10 isolates were identified as different physiological races. The four isolates used in the phytophthora foliar blight study were all determined to be different races. The identification of physiological races within P. capsici has significant implication in breeding for phytophthora root rot and phytophthora foliar blight resistance.

Free access

Adventitious shoots and viable plants were regenerated from bell pepper (Capsicum annuum L.) cultivars and dihaploid lines (DHLs) obtained from F1 hybrids via androgenesis (Dolcet-Sanjuan et al., in press). Hypocotil and cotyledon sections from in vitro-germinated seeds were used as explants. A modified MS medium (Murashige and Skoog, 1962) supplemented with IAA (0 to 3.2 μM) and BAP (0 to 100 μM) was used in a 3-week-long shoot primordia induction phase. Shoot elongation was best performed in the same basal medium, but supplemented with silver thiosulfate and GA3. Shoots were regenerated from eight selected DHLs (`C213', `C215', `C218', `C2123', `C2125', `C3111', `C3113', and `P493') and two cultivars (`Padrón' and `Yolo Wonder'). The percentage of cotyledon sections with shoot primordia after the induction phase was not genotype-dependent and always higher than with hypocotil sections (93.4% and 17.9%, respectively). The number of shoot primordia per responsive cotyledon section was also higher than with hypocotil sections (3.3 and 1.7, respectively). The genotype had a significant effect on the number of shoots regenerated per responsive cotyledon (1.1 to 5.5) or hypocotil (0.5 to 3.5) section. All adventitiously regenerated plants were fertile. This adventitious shoot regeneration protocol is being used to obtain transgenic plants from sweet bell pepper genotypes.

Free access

Reduction of floral number in Capsicum annuum has been observed during growth at high temperature. To determine whether decreased flower production or increased flower abscission is a direct response to high temperatures or a response to water stress induced by high temperatures, we compared flowers and fruit produced and flowers aborted to leaf growth rate, osmotic potential, stomatal conductance, and chlorophyll fluorescence of two cultivars. To determine the stage(s) of floral development that are most sensitive to high temperatures, flower buds were wax-embedded and examined at each stage of development during heat treatment. Rate of floral development also was examined. At first visible floral bud initiation, plants were transferred to each of three controlled environment growth chambers with set temperatures and vapor pressure deficits (VPD) of 25°C, 1.1 kPa; 33°C, 1.1 kPa; and 33°C, 2.1 kPa. Flower bud production and leaf growth rate were not significantly affected by high temperatures. Pepper fruit set, however, was inhibited at 33°C at either VPD. Preliminary water relations data suggested that water potentials were more negative under high temperature conditions. Differences in leaf fluorescence were statistically significant for temperature treatments, but not for VPD. Temperature is the primary factor in the decrease of fruit production in pepper. Decreased production is due to flower abortion and not to decreased flower initiation or plant growth.

Free access

Several inheritance experiments with bentazon herbicide-tolerant Capsicum annuum `Bohemian Chili' (BCH P1) and susceptible `Keystone Resistant Giant' (KRG, P2) and `Sweet Banana' (SB, P2) were conducted. Populations of plants at the three- to five-leaf stage were treated with a bentazon rate of 4.5 kg·ha-1. Tolerance expression was affected by environment and varied across experiments. F2 and BCP2 generations from both susceptible parent crosses fit the expected ratios for a single, dominant gene conferring tolerance. Reciprocal F1s showed a maternal effect on tolerance intensity not consistently observed in reciprocal BCP2s or at all in reciprocal F2s. Segregation ratios of reciprocal crosses, however, were not heterogeneous, based on x2 tests of observed ratios in seven of eight cases. Variable tolerance expression in expected homogeneous populations (P1, P2, and F1) and lower tolerance in BC3 families suggested that modifying factors affected tolerance. Analysis of genetic components of shoot height and fresh weight generation means showed significant digenic epistasis, primarily additive × dominance. Modifying genes that affect the major gene controlling tolerance in BCH are, therefore, present. The simple inheritance of bentazon tolerance, even though modifying factors were present, facilitated transfer of bentazon tolerance into KRG via backcrossing. Chemical name used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon).

Free access

Abstract

Concentrations of O2 greater than 21% stimulated germination rate of Capsicum annuum L. (sweet pepper) at 25°C but inhibited germination rate at 15°. At a 10% O2 concentration, germination rates were reduced at both temperatures. Gibberellins A4A7 (GA4+7) increased germination rates at 15° and 25° in air. At 25° in 100% O2, germination rates of GA-treated and nontreated seeds were the same. At 15° and 100% O2, germination rates were increased slightly by GA4+7 application; however, the rates were slower than in air. Total respiratory activity at 25° was higher in 100% O2 than in air. High O2 concentrations did not affect the proportion of respiration which was in the cyanide-sensitive and -resistant pathways. Cyanide-resistant respiration comprised only a small percentage of total respiratory activity. At 15°, total respiration and the cyanide-sensitive and -resistant components were similar regardless of O2 treatment. The addition of GA increased respiratory activity only after radicle emergence occurred. Thus, germination rate of pepper seed can be increased by increasing temperature, higher O2 concentrations at the higher temperature, and GA4+7 at normal and low temperatures. GA appears to affect germination through metabolic events which occur before radicle emergence and which do not include alteration of respiratory activity.

Open Access

Research at Padova Univ., Italy, during Summer 2003, was carried out to determine the effect on nitrogen fertilization on yield and canopy reflectance of sweet bell pepper (Capsicum annuum). Pepper var. Tolomeo LRP 4993 (Syngenta) was transplanted into plots (24 m2) on 20 May, maintaining 40 cm between plants and 75 cm between rows (3.3 plant per m2). The experimental design was a randomized block with four replicates. Treatments were 6 nitrogen fertilization rates ranging from 0 to 300 kg·ha-1. Nitrogen was distributed at planting and as top dressing, 44 days after planting. All other production techniques were typical of pepper production in the Veneto region. Beginning the second week after transplanting, canopy reflectance was measured weekly using a multispectral radiometer MSR 87 (Cropscan Rochester, Minn.). Fruits were harvested at breaking color stage starting from 21 July to 9 Oct. (8 harvests). At harvest, total and marketable yield, fruit averaged weight and nitrogen content were determined. Maximum yield was recorded at the 120 kg·ha-1 nitrogen treatment, while higher rates proved ineffective at increasing production. Nitrogen rates positively affected fruit weight. The nitrate content of fruits also increased with the nitrogen rates although it remained below the level dangerous for human health. Canopy reflectance was able to detect the different nitrogen treatments only during the late stages of the growth cycle making difficult its use as a tool to drive nitrogen fertilization.

Free access