Search Results

You are looking at 31 - 40 of 844 items for :

  • "water potential" x
Clear All
Free access

A. Naor and S. Cohen

The sensitivity of water stress indicators to changing moisture availability, and their variability, determine the number of measurements that should be taken in order to represent properly plant water status in a certain orchard. In the present study we examined the sensitivity and variability of maximum daily trunk shrinkage, midday stem water potential, and daily transpiration rate in their responses to withholding irrigation from field-grown drip-irrigated `Golden delicious' apple trees in a commercial orchard. Irrigation was withheld from the stressed trees for 17 days starting in mid-July, and the control trees were irrigated daily at 100% of the “Class A” pan evaporation rate. The courses of daily transpiration rate, maximum trunk shrinkage, and midday stem water potential before and 10 days after the drying period were similar in the control and the stressed trees. Highly significant differences between the stressed and the control trees in their midday stem water potentials were apparent from the early stages of the stress period. Daily transpiration rate and maximum daily shrinkage were more variable than midday stem water potential, and differences between treatments became significant only after measurements were expressed relative to the initial values before irrigation was witheld. Differences between treatments (as percentages of the values obtained for the control trees) increased after irrigation stopped where these differences were greatest for maximum daily shrinkage, which reached 90%; moderate for stem water potential (60%); and least for daily transpiration rate, for which the differences remained below 20%. Our data show that the choice of a certain water stress indicator should be based on both the sensitivity to changing moisture availability and the degree of variability. Possible reasons for the different sensitivity to moisture availability and the different variability between the water stress indicators under study are discussed.

Free access

L.E. Williams and F.J. Araujo

A study was conducted to compare three measurements of determining water status of grapevines (Vitis vinifera L.) in the field. Predawn leaf water potential (ΨPD), midday leaf water potential (Ψl), and midday stem water potential (Ψstem) were measured on `Chardonnay' and `Cabernet Sauvignon' grapevines grown in Napa Valley, California late in the 1999 growing season. Both cultivars had been irrigated weekly at various fractions (0, 0.5, and 1.0 for `Chardonnay' and 0, 0.5, 0.75, and 1.5 for `Cabernet') of estimated vineyard evapotranspiration (ETc) from approximately anthesis up to the dates of measurements. Predawn water potential measurements were taken beginning at 0330 hr and completed before sunrise. Midday Ψl and Ψstem measurements were taken only between 1230 and 1330 hr. In addition, net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs) were also measured at midday. Soil water content (SWC) was measured in the `Chardonnay' vineyard using a neutron probe. Values obtained for ΨPD, Ψl, and Ψstem in this study ranged from about -0.05 to -0.8, -0.7 to -1.8, and -0.5 to -1.6 MPa, respectively. All three measurements of vine water status were highly correlated with one another. Linear regression analysis of Ψl and Ψstem versus ΨPD resulted in r 2 values of 0.88 and 0.85, respectively. A similar analysis of Ψl as a function of Ψstem resulted in an r2 of 0.92. In the `Chardonnay' vineyard, all three methods of estimating vine water status were significantly (P < 0.01) correlated with SWC and applied amounts of water. Lastly, ΨPD, Ψl, and Ψstem were all linearly correlated with measurements of A and gs at midday. Under the conditions of this study, ΨPD, Ψl, and Ψstem represent equally viable methods of assessing the water status of these grapevines. They were all correlated similarly with the amount of water in the soil profile and leaf gas exchange as well as with one another.

Free access

Hui-lian Xu, Jean Caron and André Gosselin

Water potential at soil–root interface (ψ s-r) indicates soil water availability to the plants. It is related to plant water potential and transpiration. To know the characteristics of ψ s-r, in the plants under a subirrigation system, hysteresis of ψ s-r, as well as xylem water potential (ψ x) and transpiration were examined in response to soil dehydration for Prunus × cistena grown in three soil mixes: mix 1-composted bark, peat, and sand; mix 2—peat, bark, sand, and compost; and mix 3—peat, sawdust, and sand. When the soil mixes were dried from high to low water potential (ψ s), plants grown in mix 2 maintained higher ψ s-r, as well as higher ψ x and higher transpiration. However, when the soil mixes were dehydrated from the bottom, the relationships of ψ s-r, ψ x, and transpiration to ψ s showed strong hysteresis effect. ψ s-r was always lower at a given ψ s when soil was rewetted from dry to wet conditions than when soil was dried from wet conditions. ψ x and transpiration also showed hysteresis in response to soil dehydration. The extent of hysteresis was the largest in mix 2 and the smallest in mix 3. Hysteresis of ψ X or transpiration showed a similar trend to that of ψ s-r. This suggests that ψ s-r is a good indicator of soil water availability to the plants and more directly related to ψ X and transpiration than is ψ s. The difference in hysteresis of ψ s-r among soil mixes might be related to the properties of hydraulic conductance, which are determined by the soil texture. Hence, further study is needed to elucidate the mechanism of the hysteresis phenomenon.

Free access

Gary A. Clark

Free access

Milton E. Tignor, John M. Davis, Frederick S. Davies and Wayne B. Sherman

Poncirus trifoliata is a comparatively hardy, cross compatible, and graft compliant relative of Citrus. The citrus industry in Florida has suffered immense economic losses due to freezes. Although much research has been done in citrus freeze hardiness, little work has been on the early induction of freeze tolerance by low temperature. Poncirus trifoliata `Rubidoux' seedlings were germinated in perlite under intermittent mist at about 25°C and natural daylight conditions in a greenhouse and grown 2 weeks. See dlings were then transferred into a growth chamber at 25°C and 16 hour daylength for 1 week. Temperature was lowered to 10°C and tissue samples were collected at 0, 6, 24, and 168 hours. Freezing tolerance, at –6.7°C as determined by electrolyte leakage, and stem (leaves attached) water potential, measured using a pressure bomb, were also recorded for a subset of seedlings for the above intervals. After exposure to low temperature for 48 hours a red coloration became visible at the petiole leaflet junction an d at the buds, with subsequent exposure to low temperature the coloration spread to the leaves. Clones for phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), and chlorophyll ab binding protein (CAB), and chalcone synthase (CHS) were used to probe RNA isolated from P. trifoliata. PAL and 4CL transcripts increased in response to the low temperature. Significant increases in freeze hardiness occurred within 6 hours in the leaves, and increases continued for up to one week. Water potential increased from –0.6 to –2.0 MPa after 6 hours, then returned to –0.6 MPa after 1 week. These data indicate that increases in freezing tolerance and changes in water potential and gene expression can be detected shortly after low temperature treatments are imposed on P. trifoliata seedlings.

Free access

Bert M. Cregg, Pascal Nzokou and Ron Goldy

by measuring predawn shoot water potential with a pressure chamber (Model 600; PMS Instruments Company, Albany, OR). In Sept. 2007, we collected current-year shoots from the mid- to upper-crown position on each tree (10 shoots per plot) to determine

Free access

Chuhe Chen, J. Scott Cameron and Stephen F. Klauer

Leaf water potential (LWP), relative water content (RWC), gas exchange characteristics, and specific leaf weight (SLW) were measured six hours before, during, and after water stress treatment in F. chiloensis and F. ×ananassa grown in growth chambers. The leaves of both species showed significantly lower LWP and RWC as water stress developed. F. ×ananassa had consistency lower LWP under stressed and nonstressed conditions than F. chiloensis. F. ×ananassa had higher RWC under nonstressed conditions, and its RWC decreased more rapidly under water stress than F. chiloensis. In comparison to F. ×ananassa, F. chiloensis had significantly higher CO2 assimilation rate (A), leaf conductance (LC), and SLW, but not transpiration rate (Tr), under stressed and nonstressed conditions. LC was the most sensitive gas exchange characteristic to water stress and decreased first. Later, A and stomatal conductance were reduced under more severe water stress. A very high level of Tr was detected in F. ×ananassa under the most severe water stress and did not regain after stress recovery, suggesting a permanent damage to leaf. The Tr of F. chiloensis was affected less by water stress. Severe water stress resulted in higher SLW of both species.

Free access

Leonardo Lombardini*, D. Michael Glenn and Marvin K. Harris

Trials were established in Summer 2002 and 2003 to test the consequences of the application of a kaolin-based particle film (Surround WP, Engelhard Corp.) on gas exchange, nut quality, casebearer density and population of natural predators (insects and arachnids) on pecan (Carya illinoinensis, cv. `Pawnee') trees. Film application started immediately after bud break and was repeated every 7-10 days for seven (2002) or nine (2003) times during the season. On both years, treated trees frequently showed lower leaf temperature (up to 4 °C) than untreated trees. Leaf net assimilation rate, stomatal conductance and stem water potential were not affected by film application. Nut size and quality did not differ between the two treatments. In 2003, shellout (percentage of nut consisting of kernel) was in fact 54.2% and 55.5% for treated and control trees, respectively. Moreover, the two treatments yielded similar percentage of kernel crop grading as fancy, choice, standard and damaged. Similar were also the percentages of kernels that showed damage caused by stink bugs. Only on one date the number of adult yellow pecan aphids (Monelliopsis pecanis) counted on film-treated leaves was lower than in control leaves. In general, the density of common natural predators (lady beetles, green lacewings, spiders) of pecan pests did not differ between the two treatments; however, the number of green lacewing eggs was frequently lower on film-treated leaves. In film-treated trees the number of nutlets damaged by pecan nut casebearer (Acrobasis nuxvorella) was significantly higher than that observed on trees treated with conventional insecticide (24.2% infested nutlets vs. 9.3%, respectively) and did not differ from trees that did not receive either product (29.9%).

Full access

Richard Martinson, John Lambrinos and Ricardo Mata-González

landowners during the course of the study. We measured the water status and growth patterns of four native shrub species, and we tested the association between xylem water potential, monthly evapotranspiration (ET), soil moisture level, and vapor pressure

Free access

William H. Rein, Robert D. Wright and John R. Seiler

Abbreviations: ψ, water potential; RCB, randomized complete block. 1 Former Graduate Student, Dept. of Horticulture. 2 Professor, Dept. of Horticulture. 3 Assistant Professor, Dept. of Forestry. The cost of publishing this paper was defrayed in part