The wild lowbush blueberry (Vaccinium angustifolium) in Maine and the Maritime Provinces of Canada has been managed for hundreds of years, first by native Americans and more recently by European settlers. Early production practices consisted of periodic free burns over large tracts of land for pruning and weed control. New practices have centered on intensifying production and include flail mow pruning, mechanical harvesting, herbicides for weed control, and monitoring pest populations. Most recently, land smoothing for improved mechanization and leaf sampling for nutrient analysis have been adopted. Land smoothing allows producers with rough land to use labor-saving equipment and apply pesticides more precisely. Leaf analysis predicts nutrient availability much more accurately than soil testing.
Abstract
Nutrient imbalances were investigated to a) document nutrient deficiency and micronutrient toxicity symptoms in florists’ hydrangea (Hydrangea macrophylla Thunb.) and b) examine the possible relationship of single-element deficiencies and toxicities with a foliar malformation prevelant on hydrangeas grown at >30°C. Plants subjected to N, P, K, Ca, Mg, S, B, Fe, and Zn deficiency and B and Mn toxicity treatments produced visual symptoms of the corresponding nutrient imbalance. Visual symptoms did not develop in +Fe, +Cu, +Zn, +Mo, −Mn, −Cu, and −Mo treatments. None of the symptoms induced were similar to the foliar malformations observed on hydrangeas grown at >30°. Hydrangea leaf malformation does not appear to be correlated with any single nutrient imbalance within hydrangea leaves. Results of the nutrient deficiency and toxicity experiments offer a diagnostic tool for interpretation of nutrient analysis of hydrangea.
Four rates of two slow-release fertilizers were tested for optimum growth of five hosta cultivars: Hosta sieboldiana `Elegans', Hosta plantaginea `Aphrodite', Hosta `Jade Scepter', Hosta `Hadspen Blue', and Hosta `Francee'. Tissue-cultured hostas from 2.5-cm plugs were planted in 6-inch (15-cm) pots filled with a commercial soilless medium, and the slow-release fertilizer was dibbled into the medium at 0, 3, 6, or 12 g/pot. The plants were maintained for 4 months. Root and shoot fresh and dry weights were recorded at the end of the experiment. In addition, foliar nutrient analysis was conducted on `Aphrodite', `Francee', and `Jade Sceptor'. Overall, hostas grew best when the medium was amended with 3 g of either Osmocote 14N-6P-11.5K or Sierrablen 17N-6P-12K slow-release fertilizer.
, Warren Stiles, and Mary Jo Kelly for their review and Mike Rutzke for assistance with nutrient analysis. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby
growth media nutrient analysis. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.
A study was conducted to compare four different controlled-release fertilizers when used in conjunction with Tex-R Geodiscs on the growth of Ilex crenata Thunb. ex J.A. Murray `Compacta' in 3.8 L (#1) containers. The fertilizers used were Osmocote Plus Southern Formula (18N-3.9P-10K), Osmocote Plus Northern Formula (18N-3.9P-10K), Wilbro (15N-1.7P-7.5K), and Nutricote T-360 (17N-2.6P-6.6K) all applied at the rate of 1.8 kg N/m3. Geodisc treatments were: 1) no disc, 2) fertilizer placed on top of the disc, and 3) fertilizer placed beneath the disc. At 2 and 4 months after the initiation of the study, the growth indices for plants grown with both Osmocote Plus fertilizers were larger than for either of the other two fertilizers. After 7 months, final growth indices were greater for the Osmocote Plus and Wilbro treatments compared to Nutricote. Final leaf, stem, and root dry masses were all greater for the Osmocote Plus fertilizers compared to the other two, as was final plant quality. Plants with fertilizer placed on top of the disc were smaller compared to the no disc or beneath the disc treatments. Geodisc treatment had no influence on shoot dry mass or final plant quality. Data for leachate nutrient analysis and evapotranspiration will also be presented.
Pure and biculture stands of rye `Wheeler' (Secale cereale L.) and field pea (Pisum sativum L.) were established and killed for mulch in Spring 1996, 1997, and 1998, in Columbus, Ohio. Treatments were five rye to pea proportions, each with a high, medium, and low seeding rate. Their effects on tomato (Lycopersicon esculentum Mill.) growth and yield were compared with those of a weedy check; a tilled, nonweeded check; and a tilled, hand-weeded check. Tomato tissue and soil were sampled for nutrient analysis. Number of leaves, branching, height, leaf area, dry weight, rate of flowering and fruit set, and fruit yield of tomato plants varied directly with the proportion of pea in the cover crop and decreased with reduced cover crop seeding rates. In 1997, yields of tomato were as high as 50 MT·ha–1 in the 1 rye: 3 pea cover crop; yield was poorest in the weedy check (0.02 MT·ha–1 in 1996). Most of the cover-cropped plots produced better yields than did the conventionally weeded check. No consistent relationship between levels of macro-nutrients in tomato leaf and soil samples and the cover crop treatments was established. Spring-sown rye + pea bicultures (with a higher ratio of pea) have a potential for use in tomato production.
Sustainable strawberry production depends on effective weed and soil management. Alternative weed management strategies are needed because few herbicides are registered for use in matted-row strawberry culture. Soil analyses are often measured in terms of chemical and physical properties alone. Measuring biological indicators of soil quality that are sensitive to changes in the environment can enhance these analyses. The experiment compared the effects of four weed management systems on weed growth, soil quality properties, and strawberry yield, growth, and development. Treatments were killed-cover crop mixture of hairy vetch (Viciavillosa) and cereal rye (Secalecereale); compost + corn gluten meal + straw mulch; conventional herbicide; and methyl bromide soil fumigation. Results indicated that there were no differences in percentage of weed cover or number of strawberry runners between the four weed management treatments in the planting year (July or Aug. 2004). The soil quality parameters, infiltration rate, soil bulk density, earthworm number, and total porosity were similar for all treatments. Plots that received the straw mulch treatment had a soil volumetric water content 20% higher and air-filled porosity that was 26% higher than the average of other treatments. Although treatment plots received similar N, leaf nutrient analysis showed that plants receiving the straw mulch + corn gluten meal treatment had a similar amount of total N when compared to the conventional and methyl bromide treatments, but was 21% higher than the killed-cover crop treatment.
Methods for extracting growing substrate root-zone solution include the saturated media extract (SME) and the 2 water: 1 substrate (v/v) suspension, neither of which are particularly suited to bedding plant plug systems. We have developed the press extraction method (PEM) as a simple and quick alternative to these methods. The grower simply collects a representative sample of plug trays and presses the top of the plug, collecting the expelled solution. Solution pH and EC can be measured immediately and the sample then sent to an analytical laboratory for nutrient analysis. Initial experiments demonstrated that differing manual pressures did not affect solution chemical properties. The PEM then was compared to the SME and 2:1 methods over a range of fertilizer levels and with peat- and coir-based substrates. Within substrates, pH, EC, and macronutrients were similar between the PEM and the SME. The level of dilution inherent in the 2:1 method resulted in much lower EC and nutrient levels when compared to the other two methods. Further experiments compared the PEM to the SME and 2:1 on plug flats collected from several commercial greenhouses and also those grown in the research greenhouse. The wide range of bedding plant species and fertility levels tested introduced variation needed to develop regression equations and correlations to create quantitative interpretation ranges for the PEM based on previously published sufficiency ranges for the SME and 2:1.
A closed capture irrigation apparatus was designed and constructed for the purpose of monitoring irrigation effluent volume and nutrient analysis from 121-L redwood tree boxes. Measurements were taken monthly from Apr. 1997 to Oct. 1998. Tree boxes were filled with either a 3 pine bark: 1 sand: 1 peat or 3 pine bark: 1 soil media and planted with `Little Gem' magnolia [Magnolia grandiflora (L.) `Little Gem'] or Southern live oak (Quercus virginiana var. virginiana Mill.). In-line, pressure-compensated drip emitters provided irrigation water at the rate of 2 L/h. Daily irrigation volume ranged from 8 L in the fall and spring to 16 L during the summer months. The collection apparatus was constructed from 1-cm angle iron, neoprene rubber, a small drain assembly, and a 22-L plastic container. A square metal frame (43 × 43 cm) was supported by 31-cm legs and draped by a neoprene rubber mat with a drain assembly installed in the center. The drain was positioned into the plastic container creating a closed system to reduce effluent evaporation. The container capacity was adequate to store at least 24 h of collected effluent. This apparatus proved to be an efficient method of collecting irrigation effluent from large containers.