Search Results

You are looking at 31 - 40 of 671 items for :

Clear All
Free access

Bruce D. Whitaker

Lipid composition and pigment content were determined in pericarp of `Pik Red' tomatoes (Lycopersicon esculentum Mill.) that were harvested when mature-green (MG) then ripened for 1 or 14 days at 20C, chilled for 11 or 21 days at 2C, or chilled for 21 days and transferred to 20C for 4 days (rewarmed). During ripening, chlorophyll fell below a detectable level, carotenes increased 100-fold, phospholipids (PLs) dropped ≈20%, and galactolipids (GLs) dropped ≈35%. Fatty-acid unsaturation decreased slightly. Steryl esters (SEs), more than free sterols (FSs) and steryl glycosides (SGs), increased at the expense of acylated steryl glycosides (ASGs), and in all four steryl lipids, the stigmasterol: sitosterol ratio rose dramatically, whereas the level of isofucosterol fell sharply. During chilling, chlorophyll declined ≈40% and carotenes ≈60%. PL content did not change, whereas GL fell ≈15%. Fatty-acid unsaturation increased slightly. FS, much more than SG and SE, increased at the expense of ASG. The stigmasterol: sitosterol ratio changed little in ASG, SG, and SE but declined in FS. Isofucosterol increased in FS and SE. Rewarming had little effect on the levels of chlorophyll, carotenes, or PL levels, but caused GL to fall another ≈15%. Fatty-acid unsaturation decreased slightly in GL and ASG. The distribution of total sterol in ASG, SG, FS, and SE changed dramatically, yielding proportions close to those in unchilled MG fruit. Also, 4 days after rewarming, the stigmasterol: sitosterol ratio had increased sharply, particularly in FS and SE, and there was a further rise in isofucosterol in all four steryl lipids. These results indicate that chloroplast damage occurs during chilling, but PL-rich cell membranes are not degraded, even upon rewarming. Changes in sterol composition and conjugation during chilling and after rewarming could result in membrane dysfunction.

Free access

Durward Smith and Susan Cuppett

Both fresh and frozen asparagus rapidly deteriorate in quality due, in part, to the formation of oxidative off-flavors. Anti-oxidants and chelating agents prevent lipid oxidation in vegetables, but increasing the levels of such compounds in whole vegetables is difficult. Vacuum infusion was optimized to saturate asparagus spears with ascorbic acid without damaging tissues. The combination of vacuum infusion of ascorbic acid and thermal blanching effectively prevented the formation of oxidative off-flavors and hexanal during frozen storage. Sensory evaluations correlated with hexanal levels following frozen storage.

Free access

Bruce D. Whitaker

MG tomato fruit were stored for four or 12 days at chilling (2C) or nonchilling (15C) temperature. Fruits stored 12 days at 15C ripened to the turning stage, whereas fruits at 2C did not ripen. Lipids of microsomes and plastids from pericarp tissue were analyzed at harvest and after four or 12 days of storage. After 12 days at either 15C or 2C, the ratio of phospholipid (PL) to protein in microsomes declined, with a concomitant increase in the ratio of total membrane sterols (TMS) to PL. The TMS/PL ratio also increased in crude plastids. In both microsomes and plastids, free sterols (FS) increased more at 2C than at 15C, and thus accounted for a larger percentage of the TMS. The ratio of stigmasterol to sitosterol in steryl lipids, particularly in FS, increased more at 15C than at 2C. The unsaturation index of fatty acids in PL and galactolipids generally increased slightly during storage at both 15C and 2C. The ratio of phosphatidylethanolamine to P-choline increased in both membrane fractions at both temperatures. In plastids, the ratio of mono- to digalactosyldiacylglycerol declined substantially at 2C but not at 15C.

Free access

Shimon Meir, Sonia Philosoph-Hadas, Giora Zauberman, Yoram Fuchs, Miriam Akerman and Nehemia Aharoni

Fluorescent products (lipofuscin-like compounds) of lipid peroxidation, which accumulate with age, were extracted from `Fuerte' avocado (Persea americana Mill.) peels during ripening. Fractionation and analysis of these fluorescent compounds (FCs) was carried out by an improved method, based on separation of FCs from-chlorophyll by Sep-Pak silica cartridges. A sharp rise in FCs content was found 2 days after harvest in avocado fruits stored at 22C, and ethylene enhanced this rise 3-fold on the 4th day. The accumulation of FCs preceded by at leasts days the onset of climacteric ethylene and respiration and by 2 days the decrease in fruit firmness. Moreover, a 6-foId increase in the FCs concentration occurred during 1 to 2 weeks of storage at SC, but the avocado fruits did not show any other detectable signs of ripening. These results suggest that lipid peroxidation may be regarded as one of the earliest detectable processes occurring during fruit ripening. Thus, an increase of FCs in peel may be employed as a horticultural characteristic for estimating initiation of ripening in avocado fruit.

Free access

G.A. Picchioni, A.E. Watada, W.S. Conway and B.D. Whitaker

Postharvest Ca infiltration delays senescence and improves storage quality of apple fruit, but the consequences on membrane lipid composition have received little evaluation. We studied changes in galactolipids (mono- and digalactosyl-diacylglycerol; MGDG and DGDG) and sterol conjugates (sterol glycosides and acylated sterol glycosides; SG and ASG) in `Golden Delicious' cortical tissue. Fruit were pressure-infiltrated with CaCl, at harvest (0, 2, or 4% w/v), stored for 6 months at 0C, and evaluated during subsequent exposure to 20C. MGDG, SG and ASG concentrations were greater in Ca-infiltrated fruit (CIF) than in control fruit. A 35-37% increase in ASG occurred during the first 7 days at 20C in CIF, when ASG decreased by 19% in control fruit. Ca infiltration may delay degradation of plastid membranes and increase sterol conjugation during apple fruit ripening.

Free access

Dana F. Faubion and Adel A. Kader

California grown `Hass' avocado fruit were stored at 5C, in air or a controlled atmosphere (CA) of 2% oxygen and 5% carbon dioxide. Fruit were evaluated at 0, 3, 6, and 10 weeks, both immediately upon removal from storage and after 5 days at 20C. Severe chilling injury developed in the air-stored fruit after six weeks, while only moderate symptoms were observed in CA stored avocado fruit after 10 weeks. Lipid peroxidation breakdown products increased during storage and ripening in both air and CA treatments. Sterols, sterol esters, glycolipids, and phospholipids were analyzed. There was a shift in composition during storage towards increasingly saturated fatty acids. The fatty acid shift was greater in air, than in CA stored fruit. Results will be discussed concerning their relevance to chilling injury development.

Full access

Eric A. Curry

solvent-extractable lipid extraction and analysis. Fruit treated at harvest were rated for injury 1 month after treatment, after which two fruit from each treatment replication were selected for epicuticular wax analysis. From an area of the peel visually

Free access

Essaid Ait Barka, Siamak Kalantari and Joseph Arul

Fresh fruit and vegetables are highly perishable because of their active metabolism during the postharvest phase. Previous studies showed that hormic dose of UV cause a delay in the senescence of tomato fruit by about 7 days. The objective of this study was to elucidate whether UV acts on the cell membrane in producing the phenomenon of delayed senescence, since it is known that UV radiation can provoke photooxidation of membrane lipids. Membrane lipid peroxidation was studied in tomato fruit (Lycopersicon esculentum Mill cv. Trust) treated by hormic UV dose, and was followed by assaying products of lipid oxidation during the storage period. We observed the production of lipofuscin-like compounds, malondialdehyde, aldehydes, pentane, ethane, and hydrogen peroxide within few days of the treatment. An increase in the efflux of electrolytes (total, potassium, and calcium) was also observed. An immediate increase in the level of these products of oxidation supports the hypothesis that UV radiation induces membrane lipid peroxidation. However, beyond 5 to 7 days after treatment, the production of oxidation products and electrolyte leakage were lower than the control fruits. Thereafter, the level of products of lipid oxidation associated with senescence was higher in control fruits than in treated ones. Results suggest that the initial oxidation stress by the exposure to UV led to biochemical reactions inducing the production of stress compounds, such as polyamines, which are non specific antioxidants. Consequently, a delay in the senescence was observed.

Free access

Bruce D. Whitaker

Plastids and microsomal membranes were isolated from pericarp tissue of mature green and red-ripe tell pepper fruit harvested from greenhouse and field grown plants. The lipid composition of these membrane fractions changed far more with ripening of field grown than greenhouse grown fruit. Also, the phospholipid (PL), free sterol (FS), steryl glycoside (SG) and acylated steryl glycoside (ASG) content of microsomes and plastids from both green and red fruit were very different under the two growing conditions. Total steryl lipids (TSL = FS + SG + ASG), and the TSL/PL ratio, increased in microsomes and decreased in plastids with ripening. These changes were much greater in field grown fruit. The ASG/SG ratio decreased with ripening in both membrane fractions, under both growing conditions. Ripening and growth conditions affected the phospholipid and sterol composition in plastids much more than in microsomes. Lipid changes associated with the chloroplast – chromoplast transformation were similar in field and greenhouse grown fruit, including an increase in the galactolipid/PL ratio. Future studies will assess how differences in membrane lipid composition affect postharvest storage life of the fruit.

Full access

Karim M. Farag and Jiwan P. Palta

A natural lipid, lysophosphatidylethanolamine (LPE), was used as a tomato fruit ripening agent. The effect of this compound on hastening the ripening and on the defoliation of the `Heinz 7155' processing tomato and the Glamour fresh-market tomato (Lycopersicon esculentum Mill.) was compared to the effect of ethephon. Vines were sprayed to runoff in the field with a hand sprayer and fruits were harvested 2 weeks or 20 days later in a single harvest operation. LPE (100 mg liter-1) accelerated ripening of both processing and fresh-market tomatoes without defoliation. LPE-treated tomatoes had a better shelf life than the control or ethephon-treated fruit, whether they were harvested at the breaker, pink, or red stage of maturity. The combination of LPE and ethephon (100 mg liter-1) enhanced tomato ripening without damaging the foliage, suggesting that LPE can mitigate the undesirable effects of ethephon on foliage and the fruit. The LPE-related lipid phosphatidyldimethylethanol-amine dipalmitoyl (PDED) also was able to enhance some aspects of keeping quality of tomato fruits, but was not able to enhance fruit ripening. Phosphatidylethanolamine was not as effective as LPE or PDED. It appears that the active molecule of this natural lipid is the lyso form. Our results provide evidence that LPE can enhance tomato fruit ripening and postharvest storage life of vine-ripe fruits and fruits picked at early ripeness stages.