Bench-grafted Fuji/M26 apple (Malus domestica Borkh) trees were fertigated with different concentrations of nitrogen by using a modified Hoagland's solution for 45 days. CO2 assimilation and actual photosystem II (PSII) efficiency in response to incident photon flux density (PFD) were measured simultaneously in recent fully expanded leaves under low O2 (2%) and saturated CO2 (1300 ppm) conditions. A single curvilinear relationship was found between true quantum yield for CO2 assimilation and actual PSII efficiency for leaves with a wide range of leaf N content. The relationship was linear up to a quantum yield of approximately 0.05 mol CO2/mol quanta, then became curvilinear with a further rise in quantum yield in response to decreasing PFD. This relationship was subsequently used as a calibration curve to assess the rate of linear electron transport associated with rubisco and partitioning of electron flow between CO2 assimilation and photorespiration in different N leaves in response to intercellular CO2 concentration (Ci) under normal O2 conditions. Both the rate of linear electron flow, and the rate to CO2 or O2 increased with increasing leaf N at any given Ci, but the percentage of linear electron flow to CO2 assimilation remained the same regardless of leaf N content. As Ci increased, the percentage of linear electron flow to CO2 assimilation increased. In conclusion, the relationship between actual PSII efficiency and quantum yield for CO2 assimilation and the partitioning of electron flow between CO2 assimilation and photorespiration are not affected by N content in apple leaves.
It has long been observed that chilling injury of warm-season fruit and vegetables during postharvest storage as well as during early seedling growth can be mitigated by maintaining high relative humidities during the exposure to low temperatures. A strong correlation between transpiration rates and chilling injury was observed among the fruit of several PI lines of greenhouse-type and field-type Cucumis sativus L. differing in their susceptibility to chilling injury. Transpiration rates and chilling injury of the F1s from crosses between resistant and susceptible lines were intermediate. Immature fruit lost moisture at faster rates and chill injured more severely than mature fruit of the same genotype. Coatings, applied as postharvest treatments to the fruit either reduced or increased chilling injury depending on the concentration applied and whether or not they retarded or enhanced moisture loss during low temperature storage. Fruit coated with surfactant-based waxes lost more moisture and developed more chilling injury than uncoated fruit or fruit coated with carnauba wax or polyethylene emulsions. The causal relationship between transpiration at low temperatures and chilling injury is not known, primarily because the precise mechanism of chilling injury has not been unequivocally delineated. The manifestation of chilling injury, however, occurs concomitantly with an increase in respiratory rate. We have postulated that chilling injury is caused by active oxygen species generated when the mitochondrial electron transport chain is impaired. In studies with germinating seed, desiccation injury was associated with free radicals generated by mitochondria. Thus, desiccation at low temperatures may intensify respiratory activity resulting in the generation of oxygen free radicals and extensive peroxidative damage to cellular membranes and enzymes.
Tolerance to high solar irradiation is an important aspect of stress tolerance for landscape plants, particularly for species native to understory conditions. The objective of this study was to evaluate differential tolerance to high solar irradiation and underlying photosynthetic characteristics of diverse taxa of Illicium L. grown under full sun or 50% shade. Eleven commercially available taxa of Illicium were evaluated for light tolerance by measuring light-saturated photosynthetic capacity (Amax), dark-adapted quantum efficiency of photosystem II (Fv/Fm), and relative chlorophyll content using a SPAD chlorophyll meter. Comparisons of Amax indicated that three of the 11 taxa (I. anisatum L., I. parviflorum Michx. ex Vent., and I. parviflorum `Forest Green') maintained similar rates of light-saturated carbon assimilation when grown in either shade or full sun. All other taxa experienced a significant reduction in Amax when grown in full sun. Chlorophyll fluorescence analysis demonstrated that Fv/Fm was similar between sun and shade plants for the same three taxa that were able to maintain Amax. These taxa appeared to experience less photoinhibition than the others and maintained greater maximum photochemical efficiency of absorbed light. SPAD readings were not significantly reduced in these three taxa either, whereas most other taxa experienced a significant reduction. In fact, SPAD readings were significantly higher in I. parviflorum `Forest Green' when grown under full sun, which also maintained the highest Amax of all the taxa. These results suggest that there is considerable variation in light tolerance among these taxa, with I. parviflorum `Forest Green' demonstrating superior tolerance to high light among the plants compared. A more rigorous examination of I. parviflorum `Forest Green' (high light tolerance) and I. floridanum Ellis (low-light tolerance) demonstrated that I. parviflorum `Forest Green' had a considerably higher Amax, a higher light saturation point, greater potential photosynthetic capacity, reduced susceptibility to photoinhibition as indicated by superior PSII efficiency following light exposure, greater capacity for thermal de-excitation as indicated by a higher rate of nonphotochemical quenching (NPQ) under full sun, greater apparent electron transport rate (ETR) at mid-day, and higher concentrations of the free-radical scavenger myo-inositol. All of these factors contribute potentially to a greater capacity to use light energy for carbon fixation while minimizing photodamage.
Growing tomato and pepper plants under continuous light causes negative effects such as leaf chlorosis and deformities, and decreased growth and yield. Such effects are more pronounced on tomato plants. Our general objectives are to identify the physiological process(es) responsible for these negative effects and to explain the difference in sensitivity of tomato and pepper plants to continuous light. The specific objective of this experiment was to determine the effects of continuous light and light spectral composition on photosynthesis and related processes of tomato and pepper plants. Tomato and pepper plants were place on 7 June 1994 in growth chambers under photoperiod treatments of 12 h [high-pressure sodium (HPS) lamps], 24 h (HPS lamps), and 24 h [metal halide (MH) lamps]. For all treatments, FPP was 350 μmol·m–2·s–1, temperatures were 21C (day) and 17C (night), and RH was 70%. Every 2 weeks (7 June until 2 Aug.), tomato and pepper leaf samples were harvested and frozen in liquid nitrogen for subsequent measurements of starch content (Robinson et al, 1988, Plant Physiol.), sucrose phosphate synthase activities (Dali et al., 1992, Plant Physiol.) and chlorophyll and carotenoid content (determination on HPLC). A system that measured gas exchange and chlorophyll fluorescence of fresh leaf samples was used to determine the photosynthetic rate and quantum yield of CO2 fixation and electron transport. Development of the negative effects of continuous light on plants was monitored. Light spectral composition of the two types of lamps was measured using a spectroradiometer. Results show that, under continuous light, pepper plants were less-efficient than tomato plants in using light for CO2 fixation, but were more efficient in dissipating the extra energy received. This may explain why pepper plants are less sensitive to continuous light than tomato plants. MH lamps caused more-severe chloroses on tomato leaves than HPS plants. We believe that the higher proportion of UV-light provided by MH lamps may be related to this effect. Detailed results will be presented.
are affected by the mode of action of mesotrione. Chlorophyll content and quantum yield of photosynthesis system II (PSII)–mediated electron transport are often measured for this purpose in physiological studies ( Ounis et al., 2001 ). The objective of
and electron transport chain, and por, HEMH, PAO, and HEME in the porphyrin and chlorophyll synthesis pathways. The expression of nine differential genes in CK and salt stress groups was verified by qPCR. According to the selected coding sequences of
strategy of the species in question ( Huner et al., 1998 ). The primary photochemical reactions of photosystem II (PSII) and PSI occur on a much faster time scale than electron transport and metabolism, and the exposure of plants to light energy in excess
; Weaver and van Iersel, 2019 ). The decrease in photosynthetic light use efficiency at higher PPFD s is due in part to photoprotective processes that convert absorbed light energy to heat, rather than allowing it to be used for electron transport in the
similar compared with 0.747 in WT. The Chl fluorescence from PSII showed that ΦII in hy was lower than WT. Moreover, the fraction of the photochemical electron transport energy from PSII represented by qP was decreased in hy compared with WT. The
primary photochemical reactions of photosynthesis during senescence, photosynthetic electron transport and photophosphorylation were investigated using thylakoids isolated from ginkgo leaves. Approximately 2 g of leaves, without petioles (n = 5), were