This study evaluated the total and marketable yield of three peach cultivars [Prunus persica (L.) Batsch. `Autumnglo', `Harvester', and `Redhaven'] when mechanical pruning and harvesting systems were used and trees were grown under three irrigation regimes. All cultivars were trunk-shaken using an experimental inertial shaker on an over-the-row (OTR) shake–catch harvester. `Autumnglo' also was hand-harvested at all irrigation regimes. Fruit damage was not significantly affected by irrigation. A significant source of fruit damage was pruning debris that remained in the canopy after hedging and became lodged in the fruit-conveying system, resulting in cultivar effects on fruit damage. Total yield of firm-ripe fruit was similar among cultivars in 1987 and 1988. However, `Autumnglo' trees had a higher percentage of marketable fruit than `Redhaven' or `Harvester' in 1987 and 1991. Mechanical harvesting appeared to accelerate the decline of `Autumnglo' as shown by tree deaths and greater symptom expression of Prunus necrotic ringspot virus. The potential for a single mechanical harvest of peaches is limited because of the difficulty in managing the ripening window, the high potential for fruit damage, and the possibility of accelerated tree decline for disease-susceptible cultivars.
The effect of high-pressure washing (HPW) on the surface morphology and physiology of citrus fruit was examined. Mature white (Citrus paradisi Macf. `Marsh') and red (Citrus paradisi Macf. `Ruby Red') grapefruit, oranges (Citrus sinensis L. `Hamlin'), and tangelos (Citrus reticulata Blanco × Citrus paradisi Macf. `Orlando') were washed on a roller brush bed and under a water spraying system for which water pressure was varied. Washing white grapefruit and oranges for 10 seconds under conventional low water pressure (345 kPa at cone nozzle) had little effect on peel wax fine structure. Washing fruit for 10 seconds under high water pressure (1380 or 2760 kPa at veejet nozzle) removed most epicuticular wax platelets from the surface as well as other surface debris such as sand grains. Despite the removal of epicuticular wax, HPW did not affect whole fruit mass loss or exchange of water, O2, or CO2 at the midsection of the fruit. Analysis of the effect of nozzle pressure (345, 1380, or 2760 kPa), period of exposure (10 or 60 seconds), and wax application on internal gas concentrations 18 hours after washing showed that increasing nozzle pressure increased internal CO2 concentrations while waxing increased internal ethylene and CO2 concentrations and decreased O2 concentrations. An apparent wound ethylene response was often elicited from fruit washed under high pressures (≥2070 kPa) or for long exposure times (≥30 seconds).
The purpose of this six year study was to re-evaluate the potential of mechanical peach harvesting in a mechanized irrigated peach production system. `Redhaven', `Harvester' and `Autumnglo' peach cultivars were trained to a free-standing “Y” form and received: a) full season irrigation; b) irrigation during the ripening period; or c) no irrigation. Trees were 2.5 m within the row and individual plots contained 10 trees with 4 replications in a split plot design. All three cultivars were mechanically harvested using the USDA inertial shaker. In addition, the cultivar `Autumnglo' was hand harvested as a control. The percentage of mechanically harvested firm ripe fruit ranged from 64 to 95%. Fruit damage ranged from 5 to 36%. In all years, non-irrigated trees tended to have the highest harvest percentage suggesting that irrigation may widen the maturity range of peach. Fruit damage occurred due to roughly cut shoot stubs and when debris in the canopy became lodged in the harvester's conveyor system. Accelerated tree death from mechanical harvesting was noted in `Autumnglo'. We concluded that the limitations to mechanical peach harvesting outlined in the 1970's have not been overcome.
The frequency of tropical cyclones is a major factor affecting the vegetation of the Mariana Islands, where these storms are called typhoons. An average of about one typhoon per year has passed within ≈100 km of Guam during the past 50 years. The physiognomy of Guam's natural and urban forests is largely determined by these typhoons. The impact of each typhoon is determined by a long list of interacting factors such as species characteristics; environmental and horticultural conditions preceding the typhoon; the intensity, direction, and duration of winds; the amount of rainfall associated with the typhoon; and the environmental and horticultural conditions following the disturbance. Many species survive typhoons by reducing aerodynamic drag of the canopy by abscising inexpensive leaves or breakage of small stems which results in an intact major structural framework. Speed of recovery for nonlethal damage following disturbance depends on nonlimiting conditions during recovery. Thus, the most destructive typhoons are those that occur in sequence with other environmental stresses. The most common of these may be heat and high-light stress, associated with subsequent high pressure systems, and severe drought conditions. For example, the 230–298 km·h–1 winds of Typhoon Paka in Dec. 1997 were followed by the driest year on record for Guam. Typhoon debris and drought generated 1400 forest and grassland fires from Jan. through May 1998. Sequential typhoons are also severely damaging. For example, Guam experienced three direct eye passages and two more typhoons within 113 km during the months Aug. to Nov. 1992. Damage susceptibility and recovery dynamics will be discussed in relation to these and other physical, chemical, biological, and human-induced factors.
An understanding of nitrogen (N) uptake and the partitioning of N during the season by the carrot crop (Daucus carota subsp. sativus [Hoffm.] Arkang.) is required to develop more efficient N fertilization practices. Experiments were conducted on both organic and mineral soils to track the accumulation of dry matter (DM) and N over the growing season and to develop an N budget of the crop. Treatments included two carrot cultivars (`Idaho' and `Fontana') and 5 N rates ranging from 0% to 200% of the provincial recommendations in Ontario. Foliage and root samples were collected biweekly from selected treatments during the growing season and assessed for total N concentration. Harvest samples were used to calculate N uptake, N in debris, and net N removal values. Accumulation of DM and N in the roots was low until 50 to 60 days after seeding (DAS) and then increased linearly until harvest for all 3 years regardless of the soil type, cultivar, and N rate. Foliage dry weight and N accumulation were more significant by 50 to 60 DAS, increased linearly between 50 and 100 DAS, and reached a maximum or declined slightly beyond 100 DAS in most cases. The N application rates required to maximize yield on mineral soil resulted in a net loss of N from the system, except when sufficient N was available from the soil to produce optimal yield. On organic soil, a net removal of N occurred at all N application rates in all years. Carrots could be used as an N catch crop to reduce N losses in a vegetable rotation in conditions of high soil residual N, thereby improving the N use efficiency (NUE) of the crop rotation.
The Atlantic hurricane season stretches from June to November, and the vegetable growing season in South Florida begins in August. This means that pre-plant, planting, and early harvesting operations are performed during hurricane season. Three major hurricanes striking our area during two consecutive growing seasons have helped to teach us how to give vegetable crops the best chance of survival. On a 4-ha farm growing diversified vegetable crops, there have been clear differences in crop survival. Tiny seedlings of most crops were generally killed by driving rains and strong winds. However, 7- to 10-cm-tall transplants in plastic cell trays survived surprisingly well when placed on the ground in an area that did not flood and was protected from flying debris. During the hurricane with the highest winds, large plants, such as tomatoes and squash, were defoliated. Even plants that survived defoliation and regrew were injured, so they were vulnerable to diseases later in the season. It actually appears to be best not to stake crops in extremely high winds. Staked and tied tomatoes often broke off at the top string. In winds of over 90 knots, unstaked eggplants fared best of any mature crops. They fell over immediately and, lying on the ground, were protected from the high winds. After the storm passed, they were pulled upright, staked and tied, and produced excellent yields. Sweet corn also fell over, but, over a period of a week, gradually returned to about a 45° angle where it produced about 30% of the normal yield. Of course, each hurricane has different characteristics; what works in one may not be the best during others. We are, however, hoping not to have a chance to learn more about how crops survive hurricanes.
Depending on the materials used to produce a compost, it will contain lower or higher levels of nutrients and metals. If composts have been appropriately matured, nutrients are in plant-available forms for crop production, and the compost pH will be near neutral. After 25 years of research and development of regulations and advice for biosolids and compost utilization, pretreatment of industrial wastes allows biosolids composts, and composts prepared from biosolids mixed with municipal solid wastes or yard debris to contain levels of microelements needed for plant nutrition but not high levels that could cause phytotoxicity. Composts can supply N, P, K, Ca, Mg, Fe, Zn, Cu, Mn, B, Mo, and Se required by plants or animals. When used in potting media, supplemental N fertilization is usually required, depending on crop requirements. Use of compost can replace other forms of microelements used as fertilizers in media or fields. Detailed evaluation of potential food chain transfer of Cd, Pb, and other elements in composts clearly shows that consumption of 60% of garden foods produced on pH 5.5 soils with 1000 t compost/ha would not comprise risk over a lifetime of consumption, nor would ingesting the composts at 200 mg/day for 5 years. Potentially toxic organic compounds are either destroyed during composting, or bound very strongly by the compost so that plant uptake is trivial. Compost use can be a safe and wise choice for both home and commercial use to replace peat or uncomposted manures, etc. Many states have developed regulatory controls to assure that pathogenic organisms are killed during composting, and that product quality standards are attained that allow marketing for general use in the community.
Quantitative studies of plant roots are a consistent challenge. Extraction of roots from soil and debris of large samples for biomass quantification is time-consuming and tedious ( Calfee, 2003 ). This tends to limit research to small experiments
sustainable and economical option for containerized plant production. Hummel et al. (p. 325) produced composts from biosolids and woody wastes, including construction debris, storm debris, and horse waste. They screened and blended the composts with bark to
. 633 ) conducted a study in four greenhouses over a 28-week period in which they collected plant and growing medium debris and captured insects on yellow sticky cards attached to the inside of 32-gal containers. Western flower thrips, fungus gnats, and