Search Results
Fire flash (Chlorophytum amaniense), a member of Liliaceae, is attracting considerable attention in the foliage plant industry as a new addition for interior plantscaping. Coral-colored petioles and midribs contrasting with dark green leaves make it a sought after specimen. Originally collected from rainforests of eastern Africa in 1902, it has remained largely obscure for a century. Recently, studies on fire flash's propagation, production, and interiorscape performance have been completed. This report presents relevant botanical information and the results of our 4-year evaluation of this plant. Fire flash can be propagated through seed, division, or tissue culture and produced as a potted foliage plant under light levels from 114 to 228 μmol·m–2·s–1 and temperatures from 18 to 32 °C. Finished plants after being placed in building interiors are able to maintain their aesthetic appearances under a light level as low as 8 μmol·m–2·s–1 for 8 months or longer.
In two experiments, chinese hibiscus (Hibiscus rosa-sinensis), bamboo palm (Chamaedorea seifrizii), areca palm (Dypsis lutescens), fishtail palm (Caryota mitis), macarthur palm (Ptychosperma macarthurii), shooting star (Pseuderanthemum laxiflorum), downy jasmine (Jasminum multiflorum), plumbago (Plumbago auriculata), alexandra palm (Archontophoenix alexandrae), and foxtail palm (Wodyetia bifurcata) were transplanted into 6.2-L (2-gal) containers. They were fertilized with Osmocote Plus 15N-3.9P-10K (12-to14-month formulation) (Expt. 1) or Nutricote Total 18N-2.6P-6.7K (type 360) (Expt. 2) applied by either top dressing, substrate incorporation, or layering the fertilizer just below the transplanted root ball. Shoot dry weight, plant color, root dry weights in the upper and lower halves of the root ball, and weed shoot dry weight were determined when each species reached marketable size. Optimal fertilizer placement method varied among the species tested. With the exception of areca palm, none of the species tested grew best with incorporated fertilizer. Root dry weights in the lower half of the root ball for chinese hibiscus, bamboo palm, and downy jasmine were greatest when the fertilizer was layered and root dry weights in the upper half of the root ball were greatest for top-dressed chinese hibiscus. Weed growth was lower in pots receiving layered fertilizer for four of the six palm species tested.
.) for the plant material. This work was supported in part by a grant from the Florida Department of Agriculture and Consumer Services. Mention of any trade names does not imply endorsement of the products named or criticism of similar ones not named. The
University of Florida, Institute for Food and Agricultural Sciences, Center for Aquatic and Invasive Plants, 7922 NW 71st St., Gainesville, FL 32653. Published as Journal Series Number R-10420 of the Florida Agriculture Experiment Station. This
Chinese hibiscus (Hibiscus rosa-chinensis), shooting star (Pseuderanthemum laxiflorum), downy jasmine (Jasminum multiflorum), areca palm (Dypsis lutescens), and `Jetty' spathiphyllum (Spathiphyllum) were grown in containers using Osmocote Plus 15-9-12 (15N-3.9P-10K), which provided phosphorus (two experiments), or resin-coated urea plus sulfur-coated potassium sulfate, which provided no phosphorus (one experiment). Plants were treated with water drenches (controls), drenches with metalaxyl fungicide only, drenches with phosphoric acid (PO4-P), drenches with metalaxyl plus phosphorus from phosphoric acid, drenches with PhytoFos 4-28-10 [4N-12.2P-8.3K, a fertilizer containing phosphorous acid (PO3-P), a known fungicidal compound], or a foliar spray with PhytoFos 4-28-10. Plants receiving soil drenches with equivalent amounts of P from PhytoFos 4-28-10, PO4-P, or PO4-P+metalaxyl generally had the greatest shoot and root dry weights and foliar PO4-P concentrations. There were no differences between the control and metalaxyl-treated plants, indicating that root rot diseases were not a factor. Therefore, responses from PhytoFos 4-28-10 were believed to be due to its nutrient content, rather than its fungicidal properties. Foliar-applied PhytoFos 4-29-10 produced plants that were generally similar in size to control plants or those receiving metalaxyl only drenches. Fertilizers containing PO3-P appear to be about as effective as PO4-P sources when applied to the soil, but are relatively ineffective as a P source when applied as a foliar spray. A distinct positive synergistic response for shoot and root dry weights and foliar PO4-P concentrations was observed for the PO4-P+metalaxyl treatment when no P was applied except as a treatment.
Chile peppers have been highly regarded as ornamental plants since being introduced to Europe in the 15th century ( Armitage and Hamilton, 1987 ). Chile peppers considered by the horticulture industry to be “ornamental,” are compact plants with
was high [9 out of 10 ( Table 2 )]. Participants stated that they were willing to spend more on both ornamental and vegetable/herb plants when they were grown organically, but would pay slightly more for organic vegetable/herb plants (15% more) than
for horticultural purposes. They found that more than 80% of the 235 woody plant species widely considered invasive had been used in landscaping or for ornamental purposes. Of the 78 plants considered most invasive in California, 41 were propagated by