Search Results

You are looking at 211 - 220 of 499 items for :

  • "integrated pest management" x
Clear All

The colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), is the leading insect pest of potato (Solanum tuberosum L.) in northern latitudes. Host plant resistance has the potential use in an integrated pest management program for control of colorado potato beetle. During the 1998 and 1999 seasons, field studies were conducted to compare natural (leptine glycoalkaloids and glandular trichomes), engineered (Bt-cry3A and Bt-cry5 transgenic potato lines), and combined (Bt-cry5+glandular trichomes) plant resistance mechanisms of potato for control of colorado potato beetle. Nine different potato clones representing five different host plant resistance mechanisms were evaluated under natural colorado potato beetle infestation at the Montcalm Research Farm in Entrican, Michigan. The Bt-cry3A transgenic lines, the high leptine line (USDA8380-1), and the high foliar glycoalkaloid line (ND5873-15) were most effective for controlling defoliation by colorado potato beetle adults and larvae. The Bt-cry5 line (SPc5-G2) was not as effective as the Bt-cry3A transgenic lines ('Russet Burbank Newleaf,' RBN15, and YGc3.1). The glandular trichome (NYL235-4) and Bt-cry5+glandular trichome lines proved to be ineffective. Significant rank correlations for the potato lines between the two years were observed for egg masses, second and third instar, and fourth instar seasonal cumulative mean number of individuals per plant, and defoliation. Egg mass and first instar seasonal cumulative mean number of individuals per plant were not strong indicators of host plant resistance in contrast to second and third instars or adults. Based on these results, the Bt-cry3A transgenic lines, the high leptine line, and the high total glycoalkaloid line are effective host plant resistance mechanisms for control of colorado potato beetle.

Free access

Colorado potato beetle (Leptinotarsa decemlineata Say) is the leading insect pest of potato (Solanum tuberosum L.) in northern latitudes. Host plant resistance is an important tool in an integrated pest management program for controlling insect pests. Field studies were conducted to compare natural host plant resistance mechanisms (glandular trichomes and Solanum chacoense Bitter-derived resistance), engineered [Bacillus thuringiensis (Bt) Berliner Bt-cry3A], and combined (glandular trichomes + Bt-cry3A and S. chacoense-derived resistance + Bt-cry3A transgenic potato lines) sources of resistance for control of colorado potato beetle. Six different potato clones representing five different host plant resistance mechanisms were evaluated for 2 years in a field situation under natural colorado potato beetle pressure in Michigan and New York, and in a no-choice field cage study in Michigan. In the field studies, the S. chacoense-derived resistance line, Bt-cry3A transgenic, and combined resistance lines were effective in controlling defoliation by colorado potato beetle adults and larvae. Effectively no feeding was observed in the Bt-cry3A transgenic lines. The glandular trichome line suffered less defoliation than the susceptible control, but had greater defoliation than the Bt-cry3A transgenic lines and the S. chacoense-derived resistance line. In the no-choice cage study, the Bt-cry3A transgenic lines and the combined resistance lines were effective in controlling feeding by colorado potato beetle adults and larvae with no defoliation observed. The S. chacoense-derived resistance line and the glandular trichome line suffered less defoliation than the susceptible control. Based on the results of the field trials and no-choice field cage studies, these host plant resistance mechanisms could be used to develop potato varieties for use in a resistance management program for control of colorado potato beetle.

Free access

The effectiveness of a disease-warning system and efficacy of reduced-risk fungicides for management of sooty blotch (Peltaster fructicola, Leptodontium elatius, Geastrumia polystigmatis) and flyspeck (Schizothyrium pomi) (SBFS) of apple (Malus × domestica) were evaluated in Illinois, Iowa, and Wisconsin in 2001 and 2002. Warning system-timed applications of the second-cover fungicide spray occurred when 175 h of leaf wetness had accumulated; wetness data were derived either from a sensor placed beneath the canopy of apple trees (on-site) or according to remotely sensed estimates. In replicated experiments, using sensor measurements as inputs to the warning system saved one to three (mean 1.8) and zero to four (mean 2.3) fungicide sprays per season in 2001 and 2002, respectively. Because remotely estimated wetness hours accumulated more rapidly than did on-site measurements, the warning system using remotely sensed wetness data saved only zero to one (mean 0.3) and zero to two (mean 0.7) sprays per season in 2001 and 2002, respectively. SBFS incidence in the integrated pest management (IPM) plots did not differ significantly from that of conventional calendar-based fungicide sprays plots in 11 of 12 site-years. When on-site wetness measurements were used in demonstration trials at 14 cooperating commercial orchards in 2001 and 2002, the SBFS warning system saved one to six (mean 2.6) and two to seven (mean 3.1) sprays per season, respectively. Incidence of SBFS in IPM plots did not differ significantly from trees managed with cooperating growers' conventional fungicide schedules in 16 of 28 siteyears. The on-site warning system was more consistently successful in Illinois and Iowa than it was in Wisconsin in both replicated experiments and in cooperating commercial orchards. The reduced-risk fungicides kresoximmethyl and trifloxystrobin provided control of SBFS equal to conventional fungicides (benomyl or thiophanatemethyl) in all trials. Potassium bicarbonate controlled SBFS less effectively than either conventional fungicides on a calendar-based or disease-warning schedule, or treatments incorporating reduced-risk fungicides.

Full access

Conventional agricultural systems increase per-area food production, but deplete natural resources and degrade both crop and environmental quality. Many of these concerns are addressed by sustainable agricultural systems, integrated pest management, biocontrol, and other alternative systems. Environmental and social concerns have escalated the need for alternative agricultural systems in the last decade. One alternative, the organic farming system, substitutes cultural and biological inputs for synthetically made fertilizers and chemicals for crop nutrition and pest management. Practices used for crop and pest management are similar during transition from conventional to organic farming systems, but produce is not certified to be organic during the transition period. During the transition from conventional to organic farming, growers may face pest control difficulties and lower yields when conventional practices are abandoned. The objectives of this paper are to 1) give an overview of the reasons for converting to organic farming and the challenges that growers face during the transition period, 2) outline some potential strategies for crop, soil, and pest management, and 3) list guidelines and recommendations for pest management during the transition to organic farming. Implementation of crop and pest management practices depends on geographical location, climate, available onsite resources, and history of the land. During transition, growers rely on cultural mechanisms and on organic and mineral sources to improve soil fertility, to build a population of natural enemies to suppress pest populations. Pest management practices during the transition period that reduce pest populations to economically manageable levels include crop rotation, cultivation, cover crops, mulches, crop diversification, resistant varieties, and insect traps. These practices also enrich the soil biota and increase crop yields before produce is certified organically grown.

Full access

For centuries horticulturists have attempted to modify the environment in which vegetable crops are grown. A wide variety of techniques, such as glass cloches, hotcaps, cold frames, hotbeds, and various types of glass greenhouses, have been used to extend the production season. The discovery and development of the polyethylene polymer in the late 1930s, and its subsequent introduction in the early 1950s in the form of plastic films, mulches, and drip-irrigation tubing and tape, revolutionized the commercial production of selected vegetable crops and gave rise to a system of production known as plasticulture. Simply defined, plasticulture is a system of growing vegetable crops where significant benefit is derived from using products derived from polyethylene (plastic) polymers. The later discovery of other polymers, such as polyvinyl chloride, polypropylene, and polyesters, and their use in microirrigation systems, pipes, fertigation equipment, filters, fittings and connectors, containers for growing transplants, picking and packaging containers, and row covers further extended the use of plastic components in this production system. The complete plasticulture system consists of plastic and non-plastic components: plastic mulches, drip-irrigation, fertigation/chemigation, soil sanitation (fumigation and solarization), windbreaks, stand establishment technology, season-extension technology, integrated pest management, cropping strategies, and postharvest handling and marketing. In the plasticulture system, plastic-covered greenhouses, plastic mulches, row covers, high tunnels, and windbreaks both permanent and annual are the major contributors to modifying the cropping environment of vegetable crops, thus enhancing crop growth, yield, and quality. In addition to modifying the soil and air temperatures, there are also the benefits of protection from the wind and in some instances rain, insects, diseases, and vertebrate pests.

Full access

Optimizing growing conditions and, thereby, plant growth reduces the susceptibility of plants to many disease and insect pest problems. Educating lawn or landscape management professionals and homeowners about plant health management reduces the need for chemical intervention. Pesticides combined with N and P fertilizers contribute to water pollution problems in urban areas; thus, it is important to manage the amount, timing, and placement of chemicals and fertilizers. To educate consumers applying pesticides and fertilizers in residential gardens, we must educate the sales representatives and others who interact most closely with consumers. Evidence suggests that knowledge about the effects of chemicals is limited and that warning labels are not read or are ignored. Integrated pest management (IPM) offers alternatives to conventional chemical treatments, but such methods are not used commonly because of their relatively high cost and their uncertain impact on pests. Pest detection methods and using pest-resistant plants in landscapes are simple and, in many cases, readily available approaches to reducing the dependence on chemical use. Research on effective, low-cost IPM methods is essential if chemical use in landscape management is to decrease. Current impediments to reducing the pollution potential of chemicals used in the landscape include the limited number of easily implemented, reliable, and cost-effective alternative pest control methods; underfunding of research on development of alternative pest control measures; limited knowledge of commercial operators, chemical and nursery sales representatives, landscape architects, and the general public concerning available alternatives; reluctance of the nursery industry to produce, and of the landscape architects to specify the use of, pest-resistant plant materials; lack of economic or regulatory incentive for professionals to implement alternatives; inadequate funding for education on the benefits of decreased chemical use; and the necessity of changing consumer definition of unacceptable plant damage. We need to teach homeowners and professionals how to manage irrigation to optimize plant growth; use sound IPM practices for reducing disease, weed, and insect problems; and minimize pollution hazards from fertilizers and pesticides.

Full access

A field experiment was conducted in Lynden, Wash., to assess the combined bud damage to raspberry caused by cold injury, clay colored weevil (CCW) and spur blight disease last year. The CCW treatments included 3 and 6 weeks of continuous feedings and a minimal feeding in a nearby planting with no CCW infestation. Two other sets of field experiments evaluated cold injury to raspberry alone. Cold injury caused significant bud damage and moderate yield losses last winter. The large compensatory ability of raspberry makes yield loss due to cold injury alone insignificant in most years. Cold injury reduced berry yield mainly through a drop in lateral number/cane due to bud damage and cane die back. The combined damage of cold injury with infestations of CCW and spur blight, to the buds and fruit yield were devastating, and 60% bud damage and 61% yield loss were recorded. The combined damage was well over the compensatory ability of raspberry, and resulted in not only lower lateral number/cane, but also lower fruit number/lateral and fruit weight. The bud damage by CCW in the spring left little time for the secondary laterals to initiate flowers. An integrated pest management system is highly recommended to avoid the cumulative damage to the buds and has special importance in areas, where cold injury occurs frequently. Bud damage counted as cold injury was higher in the control plots (18%) than in the weevil-infested plots (6% to 9%). This was likely due to undercount of some cold damaged buds in the infested plots, which also suffered CCW feeding. All plots had similar levels of spur blight bud infection numbering from low to mid-teens. Spur blight-infected buds are often capable of producing normal fruiting laterals.

Free access

In the past decade, there has been a growing trend toward conservation and management of wildlife and the environment. Growing suburban development has increased displacement of native animals from their natural habitats; thus, there is an ever-increasing need to manage not only existing forests and large land holdings for wildlife but also developed land areas. The idea of “backyard habitat” gardening and the “green movement” in golf course design address these issues of wildlife habitat and provide design solutions that hail the growing need for natural habitats. The same principles also can be used in commercial landscape design and ultimately in reclaiming grazing pasture land for dual habitat by farm animals and native wildlife. Just as the “American Lawn” provides minimal support for wildlife due to its lack of diversity, the manicured pasture of the American farm can also be limiting for wildlife. Providing areas of cover for nesting and protection can benefit the “kept” and “unkept” animals inhabiting the area. Furthermore, the biophilic landscape provides a psychologically healthy biosphere for the personnel working on the farm. In designing landscape plans with the primary goal of aesthetic enhancement of university experimental research farms, the principals of water conservation, integrated pest management, and providing wildlife cover and food are applied to develop an aesthetically pleasing design that also provides habitat for displaced wildlife. The intent of the project is to explore the possibilities in designing successful habitats for wildlife while preserving the ultimate goal of livestock production. Implementing successful ecologically sound landscapes enable the land-grant university to teach the public the benefits of wildlife conservation and the importance of its incorporation to all aspects of land use.

Free access

Azadirachtin (ATI), an insect growth regulator derived from extracts of neem (Azadirachta indica A. Juss) seed, was evaluated for the control of cabbage looper (Trichoplusia ni Hübner), diamondback moth (Plutella xylostella L.), and silverleaf whitefly (Bemisia argentifolii Bellows and Perring) in cabbage (Brassica oleracea L. Capitata Group) grown in southwestern Texas. In Fall 1992, ATI was tested with the a.i. at 0, 22, 33 and 44 g·ha–1. In 1993, ATI was evaluated at 33 g·ha–1 and in combination with M-Pede (1%, v/v), an organic insecticide based on potassium salts of fatty acids at 49%. Two commercial (Align and Neemix) and one experimental hydrogenated (LDF) ATI formulations were evaluated at 11 g·ha–1 in 1994. Insect populations were monitored weekly before and after treatment application. Plant damage was evaluated immediately before harvest, and marketable yields were determined. In 1992, large (>6 mm long) and total cabbage looper counts were reduced by ATI compared with the nontreated control. Insect mortality was similar for all ATI rates tested in 1992. In 1993, ATI at 33 g·ha–1 + M-Pede reduced the number of cabbage looper and diamondback moth larvae. ATI efficacy against cabbage looper and diamondback moth was enhanced when crop oil (polyol fatty acid esters with polyethoxylated derivatives) was tank-mixed with Align or LDF formulations in 1994. ATI did not reduce the number of silverleaf whitefly nymphs compared to the control. In all seasons, ATI-treated plants had lower insect-induced plant damage and higher marketable head weights than the nontreated control. Using ATI on lepidopterous pests appears to be beneficial for integrated pest management strategies.

Free access

Geographical dispersion of production hampers watermelon integrated pest management (IPM) information delivery in Oklahoma. Melon Pest Manager (MPM) was created to educate and provide advisory information on IPM. Available at www.lane-ag.org, the site emphasizes information relevant to the area. MPM was conceived as Internet availability grew and was recognized to have potential for enhancing IPM implementation. Survey of producers suggested the value of Web-based information may depend on how easily it can be accessed. MPM was designed to provide easy access to watermelon IPM information. Compared to printed literature, web-based format is easier to revise and suited to presentation of information that applies yearly as well as that which may change frequently. MPM provides general discussion of melon IPM tactics and pest-identification and time sensitive information such as pest advisories and pesticide registration changes. MPM offers opportunity for novel presentation of educational information such as the real-time posting of field demonstrations. An initial challenge was to balance site development, promotion and education. Promotion and education followed placement of watermelon IPM tactic information on MPM but preceded advisory and pest identification. Pest identification links to existing sources are enhanced by material prepared for MPM. Progress is slowed by the need for expert intervention and the availability of images and descriptive information. Education on use of advisory resources (e.g., disease forecasters) is a high priority. However, availability and applicability of such products is dependent on the home site. The original concept envisaged mapping of pest activity using grower, extension agent and expert input. Time demands of other components of the site delay development of this aspect. Pest alerts are posted and distributed to county extension offices.

Free access