Search Results

You are looking at 11 - 20 of 69 items for :

  • halosulfuron x
Clear All

Effects of combining labeled rates of halosulfuron (Sandea) and s-metolachlor (Dual Magnum) were evaluated as a preemergence (PRE) application in a randomized complete block designed experiment at the Wiregrass Experiment Station in southeastern Alabama. Treatments were assigned in a factorial arrangement of four levels of halosulfuron (0.0, 0.009, 0.018, and 0.036 lbs. a.i./acre) and six levels of s-metolachlor (0.0, 0.25, 0.50, 0.75, 1.0, and 1.25 lbs. a.i/acre). The purpose of the study was to ascertain possible synergistic effects from combining these two herbicides to control nutsedge at a possible lower cost. Two repetitions were completed in 2005 with data pooled in analysis. Results found no interaction between the halosulfuron and the s-metolachlor and therefore no synergistic affects. Analysis of the main effects revealed that the highest labeled rate of either herbicide gave the highest percent control relative to the nontreated control. Soil activity of halosulfuron in controlling nutsedge has been shown to be less effective than foliar applications. Our own LD90 greenhouse studies confirmed this to be true. We examined four application techniques of halosulfuron (POST both soil and foliar, POST foliar only, POST soil only, and PRE soil only) to determine the LD90. Results revealed that halosulfuron had the lowest LD90 from the treatments with a foliar application. However, some soil activity was observed. Results from field studies indicated that PRE applications of halosulfuron must be at the highest labeled rate to provide effective control. S-metolachlor was equal to halosulfuron on percent control and is lower in cost on a per acre basis.

Free access

Field studies were conducted in Kansas and Maryland to compare the safety and efficacy of halosulfuron-methyl (HM) and bentazon for topkill of yellow nutsedge (Cyperus esculentus L.). Kentucky bluegrass (Poa pratensis L.) and creeping bentgrass (Agrostis palustris Huds.) treated with single (in Kansas) or sequential (in Maryland) HM (35 to 140 g·ha–1) or bentazon (1120 or 1680 g·ha–1) applications exhibited little injury, and treated turf had acceptable quality in all studies. Bentazon caused an unacceptable reduction in perennial ryegrass (Lolium perenne L.) quality at ≥5 weeks after treatment in four of five tests. Perennial ryegrass quality declined linearly with increasing HM rates (between 35 and 140 g·ha–1). In Maryland, HM (≥70 g·ha–1) elicited unacceptable perennial ryegrass quality for 2 or 3 weeks; however, in Kansas, quality was unacceptable for ≈1 week. In Kansas, yellow nutsedge topkill by HM (70 kg·ha–1) ranged from 52% to 97%. A single HM application (35, 70, or 140 kg·ha–1) provided > 97% topkill in Maryland. Yellow nutsedge topkill by bentazon (1680 g·ha–1) generally was inferior to that by HM (70 g·ha–1). Chemical names used: 3-(1-methylethyl)-1H-2,1,3-benzothiadiazin-4 (3H)-one 2,2-dioxide (bentazon), methyl 3-chloro-5-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-1-methylpyrazole-4-carboxylate (halosulfuron-methyl).

Free access

Dallisgrass control in response to various timings and frequencies of single and combination herbicide treatments was evaluated from 2010 to 2012 in Lubbock, TX. Treatments included thiencarbazone-methyl + foramsulfuron + halosulfuron-methyl (TFH) at 15 + 31 + 47 or 22 + 45 + 70 g a.i./ha, foramsulfuron at 106 g a.i./ha, and foramsulfuron + thiencarbazone-methyl + iodosulfuron-methyl-sodium + dicamba (foramsulfuron + TID) at 106 + (22 + 5 + 147) g a.i./ha. Applications of TFH provided ≤65% dallisgrass control by 10 weeks after initial treatment (WAIT) across two rates (15 + 31 + 47 or 22 + 45 + 70 g a.i./ha) and three application timings [September, October, or September followed by (fb) a sequential October application]. At 37 WAIT, sequential applications of TFH at 15 + 31 + 47 g a.i./ha resulted in 92% dallisgrass control. Similarly, application of TFH at 22 + 45 + 70 g a.i./ha provided 94% and 97% dallisgrass control when applied in September or September fb October, respectively. However, single October applications of TFH only provided ≤55% dallisgrass control 37 WAIT. Sequential combinations of foramsulfuron + TID at 106 + (22 + 5 + 147) g a.i./ha provided 93% dallisgrass control 37 WAIT, equivalent to single applications of TFH at 15 + 31 + 47 g a.i./ha and sequential treatments at 15 + 31 + 47 or 22 + 45 + 70 g a.i./ha. However, initial control (10 WAIT) with foramsulfuron + TID was moderate (63%). Sequential foramsulfuron applications (106 g a.i./ha) resulted in inadequate dallisgrass control (35% and 48%) 10 and 37 WAIT, respectively. Results from this study suggest that long-term dallisgrass control may be achieved when TFH is applied in September or September fb October. Applications initiated in October resulted in inadequate control, regardless of rate, which may be linked to reduced herbicidal absorption and translocation due to the onset of dallisgrass dormancy in late fall. Chemical names used: methyl 4-[(4,5-dihydro-3-methoxy-4-methyl-5-oxo-1H-1,2,4-triazol-1-yl)carbonylsulfamoyl]-5-methylthiophene-3-carboxylate (thiencarbazone-methyl); 2-[(4,6-dimethoxypyrimidin-2-yl)carbamoylsulfamoyl]-4-formamido-N,N-dimethylbenzamide (foramsulfuron); methyl 3-chloro-5-[(4,6-dimethoxypyrimidin-2-yl)carbamoylsulfamoyl]-1-methylpyrazole-4-carboxylate (halosulfuron-methyl); sodium (5-iodo-2-methoxycarbonylphenyl)sulfonyl-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoyl]azanide (iodosulfuron-methyl-sodium); and 3,6-dichloro-2-methoxybenzoic acid (dicamba).

Free access

regularly hand-pick nutsedge tubers before selling the crop, significantly reducing their profits. Currently, halosulfuron offers fair to good control of nutsedge with post-emergence applications ( McDaniel et al., 1999 ) and has potential for use in large

Full access

mesotrione were evaluated in each year. Other herbicides evaluated in at least 1 year included carfentrazone, foramsulfuron, halosulfuron, nicosulfuron, and tembotrione. Herbicide evaluations were added to the UI sweet corn hybrid nurseries at a time when

Free access

The influence of `Elbon', `Maton', and `Wheeler' winter rye (Secale cereale) with or without herbicide treatments on weed control in no-tillage (NT) zucchini squash (Cucurbita pepo) was determined. `Elbon' or `Maton' produced higher residue biomass, greater soil coverage, and higher weed control compared with `Wheeler'. Although winter rye alone did not provide sufficient weed control (generally <70%), it provided substantially greater redroot pigweed (Amaranthus retroflexus) and smooth crabgrass (Digitaria ischaemum) control (regardless of cultivar used) compared with no winter rye at both 28 and 56 days after transplanting (DAT). No effect (P > 0.05) of winter rye cultivar on early or total squash yield was detected. Although applying clomazone + ethalfluralin to winter rye residues improved redroot pigweed control compared with no herbicide, the level of control was generally not adequate (<85% control) by 56 DAT. Treatments that included halosulfuron provided greater control of redroot pigweed than clomazone + ethalfluralin, and redroot pigweed control from halosulfuron treatments was similar to the weed-free control. However, regardless of year or cover crop, any treatment with halosulfuron caused unacceptable injury to zucchini squash plants which lead to reduced squash yield (primarily early yields). Insignificant amounts of squash injury (<10% due to stunting) resulted from clomazone + ethalfluralin in no-tillage plots during either year. Treatments with clomazone + ethalfluralin had early and total yields that were similar to those of the weed-free control, although this herbicide combination provided less weed control compared with the weed-free control.

Full access

In an effort to identify new herbicides for vegetables crops, broccoli (Brassica oleracea) cantaloupe (Cucumis melo), carrot (Daucus carota), head lettuce (Lactuca sativa), bulb onion (Allium cepa), spinach (Spinacia oleracea) and processing tomato (Lycopersicon esculentum) were evaluated in the field for tolerance to eight herbicides. The following herbicides and rates, expressed in a.i. lb/acre, were applied preemergence: carfentrazone, 0.05, 0.1, 0.15 and 0.2; flufenacet, 0.525; flumioxazin, 0.063, 0.125 and 0.25; halosulfuron, 0.032 and 0.047; isoxaben, 0.25 and 0.50; rimsulfuron, 0.016 and 0.031; SAN 582, 0.94 and 1.20 and sulfentrazone, 0.15 and 0.25 (1.000 lb/acre = 1.1208 kg·ha-1). Tolerance was evaluated by measuring crop stand, injury and biomass. Several leads for new vegetable herbicides were identified. Lettuce demonstrated tolerance to carfentrazone at 0.05 and 0.10 lb/acre. Cantaloupe and processing tomato were tolerant of halosulfuron at 0.032 and 0.047 lb/acre. Broccoli, cantaloupe and processing tomato were tolerant of SAN 582 at 0.94 lb/acre. Broccoli and carrot were tolerant of sulfentrazone at 0.15 lb/acre.

Full access

( Walters, 2019 ). Although broadleaf weed control is a major issue in NT pumpkin production, halosulfuron is the only labeled POST herbicide for use in Midwest pumpkins to control certain broadleaf weeds and sedges ( Egel et al., 2020 ). In addition

Open Access

, halosulfuron, has provided reduced phytotoxicity on pepper when compared with rimsulfuron ( Stall 1999 ). The objective of this research was to determine if POST applications of several ALS-inhibiting herbicides would provide selective broadleaf weed control in

Free access

period and raised beds before installing plastic mulch fb halosulfuron POST directed basal application could decrease purple nutsedge establishment and provide control throughout the season. To achieve this goal, we addressed the following objectives: 1

Open Access