Search Results

You are looking at 11 - 20 of 1,154 items for :

  • differences among plant parts x
Clear All

Three commercially employed treatments to force scion bud growth were compared using greenhouse-grown `Carrizo' citrange [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.] seedlings budded with `Hamlin' orange [Citrus sinensis (L.) Osb.]. Scion buds were forced either by 1) cutting off (removing the rootstock shoot above the bud union); 2) lopping (cutting half-way through the rootstock shoot above the bud union and breaking over the rootstock stem); or 3) bending (bending the rootstock shoot to its base and tying it in position). Plants were harvested, dried, and weighed at various times after scion shoot emergence. Plants on which rootstock shoots remained attached (lopping or bending) had the largest scion leaf area and gained the most scion and whole-plant dry weight. Bending rootstock shoots also resulted in a longer scion, more leaves, and higher root dry weight than did removal of rootstock shoots by cutting off. Few differences in overall growth were observed among trees retaining their rootstock shoots after two scion growth flushes. Removal of rootstock shoots after the first scion growth flush reduced leaf area and dry weight gain of the second scion growth flush; however, it did not affect total scion leaf area or dry weight. Analysis of 14C-photosynthate transfer from labeled rootstock leaves showed that bending allowed the greatest movement of labeled assimilates to other plant parts during the 24 hours after 14CO2 fixation. Radiolabeled photosynthates from rootstock leaves were partitioned primarily to shoots during scion growth flushes and to roots during periods between growth flushes.

Free access

chosen and transplanted into a mud pot containing 7.0 kg of test soil. Two seedlings were planted per pot, and each pot received the same fertilizer and water management regimen. Destructive sampling in mid-Aug. 2018 was done to examine the differences in

Open Access

A model for the epidemiology of noninfectious bud-failure (Fenton, et al., 1988) predicts that BF-potcntial is universally present within specific almond cultivars with variation existing in the rate and pattern of development of BF phenotypes. Orchard surveys of Carmel in 1990 and 1991 involving four nursery sources showed a trend of 2 per cent of affected trees after one year in the orchard, increasing to 4 per cent in the second, with prospects for gradual increase with time. All four sources produced some BF trees with significant differences among sources. A study has been started to identify the source and pattern of BF-potential within the entire Carmel cultivar. It has two parts. A pedigree analysis of propagation sources from eleven commercial nurseries traces their genealogy from the original seedling plant first discovered in 1947. A propagation test of approximately 3000 individual trees representative of the propagation sources of all eleven commercial nurseries has been established. The origin of each progeny tree has been maintained in respect to source, tree, budstick and individual bud location on the stick. Expression of bud-failure symptoms in individual trees will identify the source and pattern of BF-potential within the cultivar.

Free access
Authors: and

Supplemental Ca was supplied to `Cardinal' and `Fern' strawberry (Fragaria ×ananassa Duch.) plants grown in an Enders clayey silt loam soil as a foliar spray of Ca glutarate, as soil incorporated gypsum, as fertigated calcium nitrate (CaNO3), or as a combination of the above. Controls received no Ca. Individual fruits were partitioned into six parts: proximal, distal, inner and outer receptacle, and proximal and distal achenes. Mineral nutrient concentrations (dry mass basis) found in the inner and outer receptacle, and in achenes were, in descending order, K, P, Ca, Mg, Al, Na, Fe, Mn, Zn, B, and Cu; K, P, Ca, Mg, Na, Mn, Fe, Zn, Al, B, and Cu; and Ca, P, Mg, K, Na, Fe, Mn, Zn, Al, Cu, and B, respectively. Many nutrients, including Ca, tended to occur in greater concentrations in the proximal portion of the fruit than in the distal part. With the exception of Al, nutrient concentration gradients were lowest in the inner receptacle. Fruit Ca concentrations were highest in achenes and lowest in inner receptacle tissue. Differences among cultivars in Ca concentration were found in achenes but not in receptacle tissue. Calcium treatment had no effect on receptacle tissue Ca concentrations, regardless of cultivar, but CaNO3 and combination treatments increased Ca concentrations in the achenes in the proximal half of `Cardinal' fruit. Concentrations of all other nutrients except Mn were unaffected by supplemental Ca treatments.

Free access

Pansy [Viola ×wittrockiana Gams. `Delta Yellow Blotch' (Yellow) and `Delta Primrose Blotch' (Primrose)] plants were grown in a greenhouse under two CO2 concentrations [ambient (≈400 μmol·mol-1) and enriched (≈600 μmol·mol-1)], three daily light integrals (DLI; 4.1, 10.6, and 15.6 mol·m-2·d-1), and nine combinations of day and night temperatures created by moving plants every 12 h among three temperatures (15, 20, and 25 °C). Time to flower decreased and rate of flower development increased as plant average daily temperature (ADT) increased at all DLIs for Yellow or at high and medium DLIs for Primrose. Increasing the DLI from 4.1 to 10.6 mol·m-2·d-1 also decreased time to flower by 4 and 12 days for Yellow and Primrose, respectively. Both cultivars' flower size and Yellow's dry weight [(DW); shoot, flower bud, and total] decreased linearly as plant ADT increased at high and medium DLIs, regardless of how temperature was delivered during day and night. DW in Yellow increased 50% to 100% when DLI increased from 4.1 to 10.6 mol·m-2·d-1 under both CO2 concentrations. Flower size in Yellow and Primrose increased 25% under both CO2 conditions as DLI increased from 4.1 to 10.6 mol·m-2·d-1, but there was no increase between 10.6 and 15.6 mol·m-2·d-1, regardless of CO2 concentration. Plant height and flower peduncle length in Yellow increased linearly as the difference between day and night temperatures (DIF) increased; the increase was larger under lower than higher DLIs. The ratio of leaf length to width (LL/LW) and petiole length in Yellow increased as DIF increased at medium and low DLIs. Carbon dioxide enrichment increased flower size by 4% to 10% and DW by 10% to 30% except for that of the shoot at medium DLI, but did not affect flower developmental rate or morphology. DW of vegetative and reproductive parts of the plant was correlated closely with photothermal ratio, a parameter that describes the combined effect of temperature and light.

Free access

suggested that the aerial plant parts play only very minor role in formaldehyde metabolism because there was little difference between the day and night in removal. However, the aerial plant parts obviously removed formaldehyde during the day ( Fig. 1

Free access

investigation. Table 1. Differences in growth-inhibitory activity, mineral contents, functional components, and water content among different asparagus plant parts. Growth-inhibitory activity The experiment was conducted in accordance with the

Open Access

, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry Plant Dis. 74 69 76 Smith, B.J. Black, L.L. 1991 Greenhouse efficacy of fungicides for control of anthracnose crown rot of

Free access

Pigmentation of plant vegetative tissue, including leaves, stems, and roots and reproductive tissue in flowers and fruit, is attributed to anthocyanin and carotenoid pigments. These colored compounds are produced by independent metabolic pathways

Free access

plants (SW = 110.68 g vs. TC = 145.39 g, P = 0.0413) and greater cane dry weight than SW plants (SW = 132.23 g vs. TC = 184.33 g, P = 0.0319) without a significant difference among propagation types for these variables in HC. ‘Emerald’ and ‘Jewel’ TC

Free access