Cold tolerance (CT) of 31 tomato accessions (cultivars, breeding lines, and plant introductions) representing six Lycopersicon L. sp. was evaluated during seed germination and vegetative growth. Seed germination was evaluated under temperature regimes of 11 ± 0.5 °C (cold stress) and 20 ± 0.5 °C (control) in petri plates containing 0.8% agar medium and maintained in darkness. Cold tolerance during seed germination was defined as the inverse of the ratio of germination time under cold stress to germination time under control conditions and referred to as germination tolerance index (TIG). Across accessions, TIG ranged from 0.15 to 0.48 indicating the presence of genotypic variation for CT during germination. Vegetative growth was evaluated in growth chambers with 12 h days/12 h nights of 12/5 °C (cold stress) and 25/18 °C (control) with a 12 h photoperiod of 350 mmol.m-2.s-1 (photosynthetic photon flux). Cold tolerance during vegetative growth was defined as the ratio of shoot dry weight (DW) under cold stress (DWS) to shoot DW under control (DWC) conditions and referred to as vegetative growth tolerance index (TIVG). Across accessions, TIVG ranged from 0.12 to 0.39 indicating the presence of genotypic variation for CT during vegetative growth. Cold tolerance during vegetative growth was independent of plant vigor, as judged by the absence of a significant correlation (r = 0.14, P > 0.05) between TIVG and DWC. Furthermore, CT during vegetative growth was independent of CT during seed germination, as judged by the absence of a significant rank correlation (rR = 0.14, P > 0.05) between TIVG and TIG. A few accessions, however, were identified with CT during both seed germination and vegetative growth. Results indicate that for CT breeding in tomato, each stage of plant development may have to be evaluated and selected for separately.
The genetic relationship between cold tolerance (CT) during seed germination and vegetative growth in tomato (Lycopersicon esculentum Mill.) was determined. An F2 population of a cross between accession PI120256 (cold tolerant during both seed germination and vegetative growth) and UCT5 (cold sensitive during both stages) was evaluated for germination under cold stress and the most cold tolerant progeny (the first 5% germinated) were selected. Selected progeny were grown to maturity and self-fertilized to produce F3 families (referred to as the selected F3 population). The selected F3 population was evaluated for CT separately during seed germination and vegetative growth and its performance was compared with that of a nonselected F3 population of the same cross. Results indicated that selection for CT during seed germination significantly improved CT of the progeny during germination; a realized heritability of 0.75 was obtained for CT during seed germination. However, selection for CT during germination did not affect plant CT during vegetative growth; there was no significant difference between the selected and nonselected F3 populations in either absolute CT [defined as shoot fresh weight (FW) under cold stress] or relative CT (defined as shoot FW under cold as a percentage of control). Results indicated that, in PI120256, CT during seed germination was genetically independent of CT during vegetative growth. Thus, to develop tomato cultivars with improved CT during different developmental stages, selection protocols that include all critical stages are necessary.
Seed germination is a critical step to achieve economic success in a transplant operation. Total germination of a seed lot dictates total plant sales by the producer, while uniformity of germination dictates the quality of the transplant crop. Using high vigor seed will help to achieve uniform stands, as well as maximize stands, in the transplant house or field. In order to maintain the highest seed quality, transplant producers should store unused seeds at recommended temperature and relative humidity for the crop species. Methods to promote uniformity and optimum stands under a wide range of conditions include the use of seed priming, film coating with fungicides, and pelleting for ease of planting.
commercially available in Chile, Japan, Holland, the United States, and others ( Olate and Schiappacasse, 2013 ). The understanding of seed germination, growth, and development is important for breeding purposes and sexual propagation of these species as an
has been recorded ( Ye and Luo 2006 ). Because of its critically endangered situation in the wild, the integrated approach has been used for conservation works, including seed germination, mycorrhizal symbiosis ( Han et al. 2016 ), reintroduction, and
on seed germination of this species and of Calandrinia sp. B. australis flowers naturally in spring to early summer from September to December, producing blue inflorescences on long slender stalks ( Carolin, 1992 ; Stanley and Ross, 1986 ). This
of the elegant flowers and straight tree trunk. Seed germination and seedling establishment occupied an important position in the whole life history of plant, which is the interaction result caused by the internal and external factors ( Wang, 2006
prolonged seed dormancy and low germination rates significantly hinder the development of Zanthoxylum armatum DC. Seed germination is a complex process that requires favorable environmental and external conditions, in addition to the seed’s inherent
For premium quality transplant production, it is critical to provide balanced and complete nutrition before and after seed germination. In organic production systems, nutrient management is complex and variable, unlike in inorganic production
not readily available, seedlings could be screened and then selected for stock plant production. However, seeds of many Penstemon species possess a dormancy that limits seed germination. As a result, individual germination requirements vary widely