Search Results

You are looking at 11 - 20 of 49 items for :

  • "ornamental breeding" x
Clear All
Open access

Lisa Alexander

Production and use of sweet olive (Osmanthus armatus), fragrant tea olive (O. fragrans), holly tea olive (O. heterophyllus), and fortune’s osmanthus (O. xfortunei) as a landscape plant is currently limited to U.S. Department of Agriculture (USDA) Hardiness Zones 7 to 10, and nursery growers wish to extend the range of these species into colder climates. To provide recommendations to growers and landscapers and inform breeding efforts for cold-hardiness improvement, a replicated trial was conducted in a USDA Hardiness Zone 6b/7a transition zone. Fifteen cultivars and two unnamed accessions representing four species were evaluated for growth, stem necrosis, and flowering in a pot-in-pot production system from 2015 to 2017. One-half of the plants in each cultivar were moved to winter protection each November and returned to the field each May. There were significant differences in growth and cold-hardiness among cultivars. Percent increase in the growth index after three growing seasons for winter-exposed accessions of sweet olive, fortune’s osmanthus, fragrant tea olive, and holly tea olive averaged 867%, 1175%, 155%, and 6361%, respectively. Percent stem necrosis in May 2017 for sweet olive, fortune’s osmanthus, fragrant tea olive, and holly tea olive averaged 1.1%, 2.7%, 44.8%, and 20.2%, respectively. The most cold-tolerant accessions based on stem necrosis and growth index of winter-exposed plants were ‘Kaori Hime’, ‘Hariyama’, ‘Shien’, ‘Head-Lee Fastigate’, and ‘Rotundifulius’ holly tea olive, ‘San Jose’ fortune’s osmanthus, and ‘Longwood’ sweet olive. Of these cultivars, Kaori Hime, San Jose, and Longwood flowered under winter-exposed conditions. All fragrant tea olive cultivars were damaged by winter exposure. ‘Fodingzhu’ was the only fragrant tea olive cultivar that flowered each year under winter-exposed conditions. Evaluation and breeding efforts are continuing to extend the range for production and growth of this genus.

Free access

Shu’an Wang, Rutong Yang, Peng Wang, Qing Wang, Linfang Li, Ya Li and Zengfang Yin

Free access

Zhanao Deng, Brent K. Harbaugh and Natalia A. Peres

Full access

Yalong Qin, Yiming Chen, Weibing Zhuang, Xiaochun Shu, Fengjiao Zhang, Tao Wang, Hui Xu, Bofeng Zhu and Zhong Wang

Free access

Baldwin D. Miranda and Brent K. Harbaugh

Free access

Zhanao Deng, Brent K. Harbaugh and Natalia A. Peres

Free access

Zhanao Deng, Brent K. Harbaugh and Natalia A. Peres

Free access

Zhanao Deng and Brent K. Harbaugh

Free access

Xinwang Wang, Phillip A. Wadl, Cecil Pounders, Robert N. Trigiano, Raul I. Cabrera, Brian E. Scheffler, Margaret Pooler and Timothy A. Rinehart

Genetic diversity was estimated for 51 Lagerstroemia indica L. cultivars, five Lagerstroemia fauriei Koehne cultivars, and 37 interspecific hybrids using 78 simple sequence repeat (SSR) markers. SSR loci were highly variable among the cultivars, detecting an average of 6.6 alleles (amplicons) per locus. Each locus detected 13.6 genotypes on average. Cluster analysis identified three main groups that consisted of individual cultivars from L. indica, L. fauriei, and their interspecific hybrids. However, only 18.1% of the overall variation was the result of differences between these groups, which may be attributable to pedigree-based breeding strategies that use current cultivars as parents for future selections. Clustering within each group generally reflected breeding pedigrees but was not supported by bootstrap replicates. Low statistical support was likely the result of low genetic diversity estimates, which indicated that only 25.5% of the total allele size variation was attributable to differences between the species L. indica and L. fauriei. Most allele size variation, or 74.5%, was common to L. indica and L. fauriei. Thus, introgression of other Lagestroemia species such as Lagestroemia limii Merr. (L. chekiangensis Cheng), Lagestroemia speciosa (L.) Pers., and Lagestroemia subcostata Koehne may significantly expand crapemyrtle breeding programs. This study verified relationships between existing cultivars and identified potentially untapped sources of germplasm.