Search Results

You are looking at 11 - 20 of 1,376 items for :

  • "optimization" x
Clear All
Free access

Changhoo Chun and Cary A. Mitchell

`Waldmann's Green' leaf lettuce (Lactuca sativa L.) is being used as a model leafy vegetable crop to develop a protocol for variable control of photosynthetic photon flux (PPF) during crop production. Feedback from real-time photosynthetic gas exchange rates by lettuce canopies is used to modulate electronic dimming ballasts of lamp banks. Algorithms within process-control software are being fine tuned to maximize increments of photosynthetic output relative to increments of photon input. Dynamic optimization of PPF was 21% more efficient than constant high PPF saturating photosynthesis with respect to biomass accumulated per photons absorbed. Dynamic optimization also is being combined with principles of phasic control, in which environmental resources such as photosynthetically active radiation (PAR) and carbon dioxide (CO2) are deliberatively limited in input during specific phases of crop development when plants are less sensitive to inputs (e.g., lag, plateau, and senescence phases) but optimized for the responsive exponential phase. Preliminary results indicate that leaf lettuce growth benefits from optimizing environments for no more than 4 or 5 days during a 20-day production cycle. Dynamic optimization of CO2 level is achieved by controlling the injection of CO2 into the inlet air stream of Minitron II crop canopy cuvette/growth chambers. Algorithms are being modified to simultaneously vary PPF and CO2 for optimum photosynthesis.

Free access

Zhanyuan Zhang, A. Mitra and D.P. Coyne

Optimization of parameters influencing biolistic transformation is a crucial stage towards repeatable transformation of common beans. However, there has been no published study on such optimization of this crop species in a helium particle delivery system (BioRad). Using an intron-containing β-glucuronidase (GUS) gene as a reporter, we optimized several critical parameters of biolistic PDS-1000/He delivery system for common bean transformation. The target explant tissues included cotyledons, zygotic embryos, and meristemic shoot tips suitable for organogenesis. Thus, pretreatment of target tissues with osmotic medium containing 0.15–0.25 m mannitol and 0.15–0.25 m sorbitol, positioning of target tissues in 4 cm microcarrier flying distance, the use of 1.6-μm gold particle and high concentration of coating DNA, and bombardment of young immature tissues twice at 2000 psi, etc., significantly increased transformation rate and achieved the best coverage and penetration of the meristemic areas involved in direct shoot organogenesis.

Free access

Jacob George, Harsh Pal Bais, G.A. Ravishankar and P. Manilal

Response surface methodology was utilized in statistical optimization of three quality factors (the number of multiple shoots, shoot length, and number of leaves) pertaining to regeneration of plantlets from leaf calli of Decalepis hamiltonii Wight. & Arn. (swallow root). The variables evaluated were the levels of sucrose, BA, and NAA each at two different concentrations. Response surfaces for shoot length and multiple shoot number were useful in achieving optimal levels of media constituents and in understanding their interactions, but response surfaces for number of leaves were not. The data indicate that sucrose, BA, and NAA levels may be manipulated to increase or decrease quality factors chosen. This approach may be useful in developing a micropropagation protocol for D. hamiltonii. Chemical names used: benzyladenine (BA); napthaleneacetic acid (NAA).

Free access

Bob Bors and J. Alan Sullivan

Previous research has optimized the colchicine dropper technique for chromosome doubling under greenhouse conditions. In recent years, in vitro germination of cut strawberry achenes has greatly increased germination rates. Combining the two techniques would be especially useful when chromosome doubling is desired for interspecific hybridization. Fragaria vesca was chosen for initial study. Treatments included colchicine levels of 0%, 1%, 2%, 3%, 4%, or 5% (w/v); exposure time to colchicine was from 6 to 16 to 26 hours; application was at the cotyledon stage or after the first true leaf formed; presence or absence of 3 g activated charcoal/liter; and presence or absence of DMSO. Media consisted of MS salts and vitamins, 30 g sucrose/liter, and 2.5 g phytogel/liter. Charcoal enhanced upward growth of seedlings, thus allowing better placement of colchicine droplets. Reduced exposure time and application at the first true-leaf stage allowed higher levels of colchicine to be used without greatly reducing the vigor of treated seedlings.

Free access

Maritza I. Tapia, P.E. Read, H.F. Kaeppler and P.L. Herman

Direct DNA delivery via microprojectile bombardment has been successfully used to transform a wide range of species. Transformation using this system is dependent on the optimization of several parameters. These parameters involve the explant, the gene construct, and parameters in the bombardment system. DNA was delivered into bisected axillary buds of grape hybrids `Chancellor' and `Valiant'. Target tissues were bombarded with gold microprojectiles coated with GUS::NPTII fusion gene construct(pBI426). Several experiments with varying parameters were conducted in order to increase the frequency of DNA delivery. Data were analyzed as a completely random design with 6 single petri dish as a replication and 50-60 bisected axillary buds per replication in each treatment. The treatment design was the single-factor method. Higher frequencies of transient transformation were obtained using microprojectiles of 1.6 μm diameter, adding 0.15 m mannitol and 0.15 m sorbitol, under a pressure of 68.6 cm Hg and a target distance of 6 cm. After 40 days on the selection medium containing 50 mg kanamycin/L regenerated plantlets were obtained and 40% of them expressed the GUS gene. The biolistic approach using bisected axillary buds as target tissue could be a method to achieve stable transformation and transgenic grape plants.

Free access

John Clemens and R. Hugh Morton

Containerized plants of Heliconia psittacorum L.f. × H. spathocircinata Aristeguieta `Golden Torch' were grown in a greenhouse for 8 months from early summer to winter under selected combinations of N, P, and K. Fertilizer rates ranged from zero to rates that exceeded those reported in the literature by 50% to 100%. Biomass variables (vegetative and inflorescence dry weight, and leaf area) were predicted to be maximized at high N and high N to P, and N to K ratios corresponding to N-P-K application rates of 1.2, 0.5, and 0.6 kg·m-3, respectively (≈2:1:1). However, the number of shoots and flowers produced per rhizome were maximal at lower N to K ratios (1:1). Flower yield could therefore be optimized with appropriate fertilization, provided attention was paid to the N to K ratio so that the size of plants and their flowers was not compromised by efforts to increase shoot and flower number. The heavier the rhizome planted, the shorter the time for shoot emergence and flowering to occur, and the greater the number of flowers harvested. However, rhizome weight had no effect on number of shoots to emerge. The probability of shoots flowering declined markedly with order of shoot emergence, although this could be increased with appropriate mineral nutrition. The maximum number of leaves subtending the inflorescence (seven) was obtained at high N and P rates. Flower production was probably limited by declining solar radiation in autumn, and by within-plant competition for rooting space.

Free access

Tracy A. Ohler, S. Suzanne Nielsen and Cary A. Mitchell

Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g·m–2·day–1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g·m–2·day–1·g–1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

Free access

John C. Beaulieu, Allison K. Rausch and Elaine T. Champagne

Fresh-cut melons in many consumer-ready packages are notorious for “wetting” and accumulation of standing juices. These conditions likely create undesirable flavor and aroma changes. We initiated a study to investigate flavor changes in stored fresh-cut cantaloupe. One objective was to optimize solid phase microextraction (SPME) to evaluate organoleptic compounds. Static head-space SPME analyses were performed on fresh-cut cantaloupe cubes (≈2.5 mm, 5 mm, or 2.5 cm), expressed juice, and homogenized slurries. SPME fiber (100 μm PDMS vs. 75 μm Carboxen/PDMS) exposure time (5, 7.5, 10, 12.5, 15, 17.5, 20 min) was evaluated at 40 °C with various head-space: product ratios, plus or minus NaCl to produce typical chromatograms. Fibers were desorbed in an HP5890 GC with a DB-624 or DB-5 column for 45-min runs and an HP6890 GC (DB-5) equipped with a 5973 MS detector for 35-min runs. Albeit qualitative, the best chromatograms were obtained with 7-ml slurries, stirred with NaCl, exposed to a 10 0μm PDMS SPME fiber for 12.5 min. The 100 μm PDMS fiber produced better chromatograms considering the fact that many important flavor volatiles are low-molecular-weight polar esters and alcohols. These conditions were subsequently used to analyze numerous fresh-cut cantaloupe samples stored various times (0 to 9 days). Over 100 peaks were identified, many of which changed through storage and some are suspected as probable agents responsible for undesirable flavor changes. Our analyses are progressing in an attempt to authenticate compounds associated with flavor-related changes in numerous fresh-cut cantaloupe varieties from various growing regions.

Free access

Tracy A. Ohler and Cary A. Mitchell

Photoperiod and harvest scenario of cowpea (Vigna unguiculata L. Walp) canopies were manipulated to optimize productivity for use in future controlled ecological life-support systems. Productivity was measured by edible yield rate (EYR: g·m-2·day-1), shoot harvest index (SHI: g edible biomass·[g total shoot dry weight]), and yield-efficiency rate (YER: g edible biomass·m-2·day-1per [g nonedible shoot dry weight]). Breeding lines `IT84S-2246' (S-2246) and `IT82D-889' (D-889) were grown in a greenhouse under 8-, 12-, or 24-h photoperiods. S-2246 was short-day and D-889 was day-neutral for flowering. Under each photoperiod, cowpeas were harvested either for leaves only, seeds only, or leaves plus seeds (mixed harvest). Photoperiod did not affect EYR of either breeding line for any harvest scenario tested. Averaged over both breeding lines, seed harvest gave the highest EYR at 6.7 g·m-2·day-1. The highest SHI (65%) and YER (94 mg·m-2·day-1·g-1) were achieved for leaf-only harvest of D-889 under an 8-h photoperiod. For leaf-only harvest of S-2246, both SHI and YER increased with increasing photoperiod, but declined for seed-only and mixed harvests. However, photoperiod had no effect on SHI or YER for D-889 for any harvest scenario. A second experiment utilized the short-day cowpea breeding line `IT89KD-288' (D-288) and the day-neutral breeding line `IT87D-941-1' (D-941) to compare yield parameters using photoperiod extension under differing lamp types. This experiment confirmed the photoperiod responses of D-889 and S-2246 to a mixed-harvest scenario and indicated that daylength extension with higher irradiance from high pressure sodium lamps further suppressed EYR, SHI, and YER of the short-day breeding line D-288.

Full access

Elsa S. Sánchez, Ermita Hernández, Mark L. Gleason, Jean C. Batzer, Mark A. Williams, Timothy Coolong and Ricardo Bessin

The goal of this study was to develop a systems-based strategy for organic muskmelon (Cucumis melo var. reticulatus) in Pennsylvania (PA), Iowa (IA), and Kentucky (KY) to manage bacterial wilt (Erwinia tracheiphila) and nutrients while safeguarding yield and enhancing early harvest. Spunbond polypropylene rowcovers deployed for different timings during the growing season were evaluated for suppressing bacterial wilt and locally available compost was applied based on two different estimated rates of mineralization of organic nitrogen (N) to manage nutrients. In KY only, the use of rowcovers suppressed bacterial wilt incidence compared with not using rowcovers. However, the timing of rowcover removal did not impact wilt incidence. Under lower cucumber beetle [striped cucumber beetle (Acalymma vittatum) and spotted cucumber beetle (Diabrotica undecimpunctata howardi)] pressure in PA and IA, rowcovers did not consistently suppress season-long incidence of bacterial wilt. In four of five site-years in PA and IA, more marketable fruit were produced when rowcovers were removed 10 days after an action threshold (the date the first flower opened in PA; the date when ≥50% of plants in a subplot had developed perfect flowers in IA and KY) than when no 10-day delay was made or when no rowcovers were used. In addition, the no-rowcover treatment consistently had lower weight per marketable fruit. In KY, the same action threshold without the 10-day delay, followed by insecticide applications, resulted in the largest number of marketable fruit, but did not affect marketable fruit weight. In PA, marketable yield was higher using compost compared with the organic fertilizer in 1 year. No yield differences were observed by nutrient treatments in 2 years. In IA, marketable yield was lower with the low amount of compost compared with the organic fertilizer and yields with the high amount of compost were not different from the low amount or the organic fertilizer in the year it was evaluated. In KY, marketable yield was unaffected by the nutrient treatments in the year it was evaluated. Given these results, muskmelon growers in PA, IA, and KY who use compost may choose the lower compost rate to minimize production costs. Overall, these findings suggest that rowcover-based strategies for organic management of bacterial wilt need to be optimized on a regional basis, and that fertilization with compost is compatible with these strategies.