Search Results

You are looking at 11 - 20 of 92 items for :

  • "Solanum melongena L." x
Clear All
Free access

Jaime Prohens, Adrián Rodríguez-Burruezo, María Dolores Raigón and Fernando Nuez

. Messiaen, C.M. 1991 A new source of resistance to bacterial wilt of eggplants obtained from a cross: Solanum aethiopicum L. × Solanum melongena L Agronomie 11 555 560 Aubert, S. Daunay, M.C. Pochard, E

Free access

David M. Butler, Gary E. Bates and Sarah E. Eichler Inwood

has a roller and will flatten cover crops ( Morse, 1999 ) at cover crop flowering (5 May 2011 and 20 Apr. 2012). Eggplant ( Solanum melongena L. cv. Traviata) transplants were produced in the greenhouse in 128-cell (36-cm 3 cell volume) trays

Free access

Hironobu Tsuchida, Cheng Dan-Hong, Kazuko Inoue, Nobuyuki Kozukue and Susumu Mizuno

This study investigated the mechanism of alanine accumulation observed as a common factor in chilling-sensitive crops [cucumber (Cucumis sativus L.) and eggplant (Solanum melongena L.)] during cold storage. Pyruvic acid in acids increased rapidly during the storage of these crops at 1C. However, in sensitive crops at 20C or in a chilling-resistant crop [carrot (Daucus carota L.)] at 1C, the increase was not found. No significant changes in glutamate-pyruvate transaminase (GPT) activity closely related to the biosynthesis of alanine were found in chilling-sensitive or chilling-resistant crops during storage at 1, 5, or 20C. We suggest that the accumulated alanine found in chilling-sensitive crops may be produced by GPT from accumulated pyruvic acid during cold storage.

Free access

Masayuki Oda, Kunihiko Okada, Hidekazu Sasaki, Shigeki Akazawa and Masahiro Sei

Eggplant (Solanum melongena L.) at the two-leaf stage were grafted on scarlet eggplant (Solanum integrifolium Poir.) by hand or a newly developed robot. The scion and rootstock were fixed with an elastic tube for hand grafting or with an adhesive and a hardener for robotic grafting. After acclimatization, the grafted plants were planted at the three- or 11-leaf stage in a glasshouse. Plants grafted by the robot showed a higher percentage of survival, and attained the three- and 11-leaf stages 8 days earlier on average than those grafted by hand. Stems were longer, and shoot fresh mass and fruit yield of plants were higher for the three-leaf-than for the 11-leaf-stage planting, irrespective of the grafting method. Such vigorous growth and high yield by robotic grafting were absent for the 11-leaf-stage planting but obvious for the three-leaf-stage planting.

Free access

Brian A. Kahn and Mark E. Payton

Eggplants (Solanum melongena L.) were grown from transplants in a field study at Bixby, Okla., in 2005. Plants were harvested twice a week for 7 weeks. Data were taken from 3 individual plants per plot × 11 cultivars × 3 replications. The open-pollinated `Black Beauty' was inferior to the hybrids for yield and fruit quality. Patterns of cumulative percent marketable fruit number did not differ for 3 of the 4 cultivars producing the numerically highest (not always statistically highest) marketable fruit weights per plant (`Classic', `Nadia', and `Santana'). `Dusky' was the exception; fruit number peaked relatively early, but it still totaled among the highest for marketable fruit weight per plant. This might be considered an efficient fruiting pattern. Apart from `Dusky', a relatively high cumulative percent marketable fruit number throughout the season tended to be associated with an intermediate to low marketable fruit weight per plant. Two factors usually were responsible for this pattern: relatively low average marketable fruit weight, or high cull production. Despite significant differences in individual marketable fruiting patterns and average fruit weights, one relatively simple curvilinear model gave an excellent estimation of total and marketable eggplant fruit production (respectively) over time. The model was pct = 1/(1+exp(-(a+b*day))), where pct = estimated cumulative percent based on number of fruit, a = intercept, and b = slope.

Free access

G.J. Hochmuth, R.C. Hochmuth, M.E. Donley and E.A. Hanlon

`Classic' eggplant (Solanum melongena L.) responses to K fertilization were evaluated in Spring and Fall 1991 at Live Oak, Fla., on soils testing low in Mehlich-1 extractable K. Total season yield leveled off at 51.1 t·ha-1 with 94 kg K/ha fertilization in spring and at 53.3 t·ha-1 with 60 kg K/ha in fall. Critical K concentrations (in grams per kilogram) in whole leaves were ≈45 at first flowering, 35 at early fruiting, 30 during harvest, and 28 at the end of seven harvests. Fresh petiole-sap K critical concentrations (in milligrams per liter) were ≈4500 to 5000 before harvest and 4000 to 4500 during harvest. Less than 3500 mg K/liter in fresh sap indicated K deficiency in fruiting plants. The Mehlich-1 soil extractant procedure predicted similar responses at the two sites; however, yield responses showed that the two sites differed in fertilization requirements. Fertilizer recommendations for K at both sites exceeded eggplant K requirements.

Free access

C. Kubota, S. Seiyama, K. Sakami and T. Kozai

Storage techniques to hold the seedlings for several weeks prior to shipping/transplanting have been required for the successful management in plug seedling production. During storage, it is required to suppress growth and development of the seedlings as well as to preserve their transplant quality. Illumination during storage has been shown to be important for storage of high-quality transplants. In the present experiments, eggplant (Solanum melongena L.) plug seedlings, which were ready for transplanting after 3 weeks of growth under 28/20C photo-/dark period temperature, 330 μmol·m–2·s–1 photosynthetic photon flux (PPF), and 16-hr photoperiod per day, were stored for 3 to 4 weeks under combinations of different temperatures, PPF, and photoperiods. Storage air temperature affected elongation of the seedlings during 3 weeks of storage. Continuous illumination at a PPF close to the light compensation point maintained dry weight of the seedlings unchanged during storage and kept the high percent survival after storage. Storage in darkness reduced the dry weight during storage and, thus, the percent survival after storage. PPF and photoperiod were shown to be important factors in the preservation of transplant quality and suppression of growth of the seedlings during storage.

Free access

Nazareno Acciarri, Gabriele Vitelli, Salvatore Arpaia, Giuseppe Mennella, Francesco Sunseri and Giuseppe L. Rotino

Colorado potato beetle (CPB; Leptinotarsa decemlineata-Say) is a serious pest because it has developed resistance against insecticides. Three transgenic eggplant (Solanum melongena L.) lines bearing a mutagenized Bacillus thuringiensis Berl. gene coding for the Cry3B toxin, and the nontransformed control DR2-line were tested in field trials to assess their insect resistance. The transgenic lines 3-2, 6-1, and 9-8 were tested at two different locations in a randomized complete-block design. Samples were taken biweekly to assess the level of CPB and the presence of other insects. At harvest, total yield and fruit number per plot were recorded. Two transgenic lines showed high levels of resistance at both locations, as measured by CPB abundance and yield. Fruit production was almost twice as great in the highly resistant lines (3-2 and 9-8) as in the nontransformed control. The 6-1 transgenic line showed an intermediate level of resistance; it was similar to the control under heavy CPB pressure and was comparable to the other transgenic lines under milder infestations. Analysis by double antibody sandwich–enzyme linked immunosorbent assay (DAS–ELISA), performed on different tissues, revealed a lower amount of Cry3B protein in the 6-1 transgenic line than in lines 3-2 and 9-8. No detrimental effects on nontarget arthropods (including the chrysomelid Altica) were evident. Field observations confirmed that Bt may be able to control CPB infestation in eggplant, representing a potential effective and environmentally safe means of pest control.

Free access

Xenia Y. Wolff and Robert R. Coltman

`Waimanalo Long' eggplant (Solanum melongena L.), `Kahala' soybean [Glycine max (L.) Merrill], `Jumbo Virginia' peanut (Arachis hypogea L.), `Waimanalo Red' sweet potato [Ipomea batatas (L.) Lam.], and `Green Mignonette' semihead lettuce (Lactuca sativa L.) were field-grown in two seasons at Waimanalo, Oahu, Hawaii, in the open sun and with four artificially produced levels of shade (30%, 47%, 63%, and 73%). Yields and vegetative growth of eggplant, soybean, peanut, and sweet potato decreased linearly with increasing shade levels. Compared to unshaded controls, yields of semihead lettuce increased significantly under 30% shade in Fall 1986. During Spring 1987, lettuce yields were reduced only slightly from unshaded levels by increasing shade up to 47%. Leaf areas of index leaves of eggplant, soybean, and lettuce were similar to unshaded controls as shade intensity increased, while leaf dry weight decreased under shade. By comparison, both leaf area and leaf dry weight of peanut index leaves decreased as shade increased. Leaf area and leaf dry weight of sweet potato did not respond to shading. The results indicate that, of the five crops studied, only lettuce can be grown successfully under lightly shaded conditions and still receive enough radiant energy for maximum photosynthesis and yields.

Free access

Gojko Jelenkovic, Sharon Billings, Qi Chen, James Lashomb, George Hamilton and Gerald Ghidiu

A population of 300 putative transgenic eggplants (Solanum melongena L.) carrying the syn cryIIIA gene was produced and tested for resistance to the Colorado potato beetle [CPB; Leptinotarsa decemlineata (Say)]. Toxicity tests in planta and in vitro demonstrated that 69% of the transformed plants were resistant to neonate larvae and adult CPB. Transgenicity of the plants was confirmed by studies of GUS expression and Southern and northern analysis. Primary transformants, having a single insert of the construct, upon selfing, produced progenies cosegregating for the uidA and syn cryIIIA genes at the expected 3:1 ratios with a few exceptions in which only one of the genes was expressed. The latter was attributed to the gene silencing phenomenon. The segregating resistant R1 seedlings showed the same level of resistance as the parental genotypes in growth chamber tests and under field conditions. One genotype carrying two copies of the construct, upon selfing, segregated at a 15:1 ratio for GUS expression and resistance to CPB, while Southern analysis revealed a 9:3:3:1 genotypic segregation ratio for individual copies of the construct.