Search Results

You are looking at 11 - 20 of 71 items for :

  • " Prunus salicina " x
  • HortScience x
Clear All

The susceptibility to chilling injury (CI) or internal breakdown (IB) was evaluated in the most currently planted yellow- and white-flesh peach [Prunus persica (L.) Batsch] and nectarine [Prunus persica var. nectarine (L.) Batsch] and plum [Prunus salicina Lindel] cultivars from different breeding sources and fruit types. Cultivars were segregated into three categories (Cat. A, B, and C) according to their susceptibility to CI or IB symptoms (mealiness and flesh browning) when exposed to 0 °C or 5 °C storage temperatures. Cultivars in Cat. A did not develop any symptoms of CI after 5 weeks of storage at either temperature. Cultivars in Cat. B developed symptoms only when stored at 5 °C within 5 weeks of storage. Cultivars were classified in Cat. C when fruit developed CI symptoms at both storage temperatures within 5 weeks of storage. Most of the yellow- and white-flesh peach cultivars developed IB symptoms when stored at both storage temperatures (Cat. C). Most of the new nectarine cultivar introductions did not develop CI symptoms when stored at 0 °C or 5 °C after 5 weeks (Cat. A). Three out of six plum cultivars tested had CI symptoms within 5 weeks storage at 0 °C. However, all of the plum cultivars tested developed CI symptoms when stored at 5 °C (Cat. B). The importance of proper temperature management during postharvest handling was demonstrated.

Free access

A nondestructive, acoustic method was applied to evaluate firmness of nectarines (Prunus persica Batch.), apricots (Prunus mume Sieb. et Succ.), plums (Prunus salicina Lindl.), and tomatoes (Lycopersicon esculentum Mill. `Beiju'). Sound with frequencies from 200 to 2000 Hz, generated by a miniature speaker attached to the fruit surface, was received by a small microphone attached to the opposite side. The signal was monitored by an oscilloscope. Sound frequency did not change during propagation in the fruit. However, as the microphone was moved along the circumference of the fruit, a phase shift in the received signal was observed. When the distance the microphone was displaced along the surface of the fruit corresponded to a shift of exactly one wavelength, the sound wavelength propagated within the fruit could be determined. The number of sound waves within the fruit over half its circumference was calculated as a function of this distance. Mature fruit propagated shorter wavelengths and consequently more sound waves than immature fruit, indicating that the sound velocity in the mature fruit was lower than in immature fruit. This relatively simple method for measuring lower frequency suggests that the sound velocity propagated through fruit can be determined without measuring the absolute velocity.

Free access

.) ( Halász et al., 2005 ; Yaegaki et al., 2001 ), and plums ( Sutherland et al., 2004a ). Most commercial cultivars of japanese plum ( Prunus salicina ) are self-incompatible ( Nyéki and Szabó, 1995 ; Ontivero et al., 2006 ; Sansavini et al., 1981 ). The

Free access
Author:

In the history of horticulture it is rare to find an individual who almost single-handedly created a new commercial industry based on a novel fruit type as Luther Burbank (1849–1926) did for Asian-type plums ( Prunus salicina ) in the United States

Free access

The influence of the species in spring frost sensibility was determined for the Prunus species peach (P. persica (L.) Batsch), sweet cherry (P. avium L.), almond (P. dulcis (Mill.) Webb/P. amygdalus Batsch), japanese plum (P. salicina Lindl.), and blackthorn (P. spinosa L.). The confidence intervals for lethal temperatures of 10% (LT10) and 90% (LT90) bud injury were also determined. In 2000 and 2001, seven frost treatments were made for each one of the phenological stages comprised between B (first swell) and I (jacket split) in two cultivars per each species. The relationships between frost temperature and the proportion of frost damaged buds for each cultivar, year, and phenological stage were adjusted to linear regression models. The 95% confidence intervals were also calculated. The spring frost hardiness order of the species, from the least to most hardy, was as follows: sweet cherry, almond, peach, japanese plum, and blackthorn. Despite the highly homogeneous nature of the frost and bud characteristics, the temperature range for a given injury degree was quite broad, since the confidence interval's breadth for LT10 was as high as about 3 °C and as high as about 6 °C for LT90. Consequently, when critical temperatures are used in making decisions as to when to begin active frost protection, a prudent measure would be to take the temperature references from the upper limits in the confidence intervals.

Free access