Heavy P fertilization of vegetable crops in the Salinas Valley of California have increased soil P levels, with > 50 mg·kg-1 bicarbonate-extractable P (Pbc) now common. To evaluate the response of lettuce (Lactuca sativa L.) to P fertilization in fields with elevated soil P levels, 12 trials were conducted in commercial fields during 2002-2003. Pbc at the trial sites varied from 53-171 mg·kg-1. In each trial four replicate plots receiving the growers' P application were compared with paired plots in which no P was applied. Leaf P was monitored at cupping stage and at harvest. At harvest mean whole plant mass and % of marketable plants were recorded. The correlation of Pbc to bioavailable P (Pba) was evaluated using 30 representative Salinas Valley soils; Pbc varied among these soils from 15-177 mg·kg-1. Pba was estimated by P adsorption on an anion resin membrane during a 16 h incubation. The effect of temperature on P bioavailability in 6 of these soils was estimated by conducting the Pba incubation at 5, 15 and 25 °C. A significant increase in lettuce yield with P fertilization was achieved at only one trial site, a spring planting where Pbc was 54 mg kg-1 ; at all other sites, including 3 with Pbc < 60 mg kg-1, P application resulted in no agronomic benefit. P application resulted in only a marginal increase in plant P uptake. Pba was highly correlated with Pbc (r = 0.89). Pba increased approximately 40% across soils with each 10 °C increase in soil temperature.
Abstract
Fertilization with K2SO4 resulted in good uptake of K by trees of French prune (Prunus domestica L. cv. Agen) whether K was applied in drip water or dry K2SO4 was placed on the soil under the emitter and then drip irrigated. These methods were much more effective than applying K2SO4 in trenches alongside the trees and then sprinkler-irrigating. K fertilization with a drip system resulted in K movement to depths of 60 to 75 cm, where the soil is wet from drip irrigation and roots are abundant, enhancing K uptake.
Sweetpotato [Ipomoea batatas (L.) Lam.] is intensively used as an animal feed in many developing countries. Information about trypsin inhibitor activity (TIA), an antinutritional component in this crop, will be useful for breeding sweetpotato as animal feed. Nine sweetpotato lines were grown at two locations and fertilized or nonfertilized conditions at each location. Samples were analyzed for TIA using a substrate-specific colorimetric method. Soybean [Glycine max (L.) Merr.] seeds were used to compare the levels of TIA in sweetpotato and soybean. Activity in roots ranged from 29.5 to 55.0 units in the nine lines. The mean TIA in roots was 40.7 units averaged over lines and environments, which was ≈28% of the mean for the five soybean cultivars. Activity in sweetpotato vines was only ≈14.6% of that in the roots, and TIA in fertilized plots was 150% and 67% higher than that in nonfertilized plots in the two locations, respectively. There was a small but significant positive correlation between TIA and crude protein in roots. These results suggested that TIA in sweetpotato storage roots may be high enough to have a substantial nutritional impact on animals, whereas TIA in vines is very low and should be of less nutritional concern.
Mature `Picual' olive (Olea europaea L.) trees growing in two different localities of Córdoba and Jaén provinces, southern Spain, were subjected to annual applications of 0, 0.12, 0.25, 0.50, or 1.0 kg N/tree in the Cordoba's experiment, and to 0 or 1.5 kg N/tree in the Jaén's experiment. Nitrogen was applied 50% to the soil and 50% through foliar application in Córdoba, and 100% to the soil in Jaén. Three years after the initiation of treatments, when the trees showed differences among them in nitrogen content, fruit were sampled at maturity from each experimental tree during six consecutive seasons to determine the effect of nitrogen fertilization on olive oil quality. Tree nitrogen status was always above the threshold limit for deficiency even in control trees, indicating that most treatments caused nitrogen over fertilization. Nitrogen in excess was accumulated in fruit and, consequently, polyphenol content, the main natural antioxidants, significantly decreased in olive oil as nitrogen increased in fruit. The decrease in polyphenols induced a significant decrease in the oxidative stability of the oil and its bitterness. Tocopherol content, on the contrary, increased with nitrogen application, mainly by an increase in α-tocopherol, the main component in the olive oil. No effect was found on pigment content, particularly carotenoid and chlorophyllic pigments, neither on fatty acid composition.
Abstract
A field experiment was conducted to determine if the turf quality of bermudagrass (Cynodon dactylon L. Pers.) was influenced by an interaction of genotype and nitrogen fertilization. The currently recommended level for maintenance of adequate quality in New Mexico bermudagrass turf is 48 kg N/ha per month during the growing season, the highest rate used in the study. The response of 10 bermudagrass genotypes, ‘Common’, ‘FB 49’, ‘FB 119’, ‘FB 133’, ‘N-7’, ‘NM-B1’, ‘Ormond’, ‘Santa Ana’, ‘Tifgreen’, and ‘Texturf 10’ were evaluated at N levels of 0, 16, 33 and 48 kg N/ha per month during the growing season. Color, density, and clipping yield responses of the genotypes differed for the four N fertility Ievels.‘Texturf 10’ had the highest overall ranking at 48 kg N/ha per month and ‘Ormond’ had the highest ranking at 32 and 16 kg N/ha per month. Thus, cultivar selection must be considered in arriving at precision N fertilization of bermudagrass turf.
The objective of this study was to determine which combination of three types of irrigation systems, three fertilization method, and four growing media produced optimum growth of flowering vinca, Catharanthus roseus. Irrigation systems used included ebb-and-fl ood, drip, and pulse; fertilization methods included slow release, prepackaged, and custom mixed; and the four growing media were peatmoss:perlite:vermiculite (1:1:1, by volume), peatmoss:rockwool (1:1, by volume), and 0.6-cm diameter shredded rubber or fabric from waste tires: vermiculite:peatmoss (1:1:2, by volume). Four replications of five plants each were used in each of the 36 treatment combinations. Plants were potted 29 and 30 May 1996 in 10-cm containers, grown for 10 weeks, and harvested 6 Aug. 1996. The drip-irrigated benches were irrigated once per day for 15 s. Pulse-irrigated benches were watered twice per day for 6 s. This resulted in the drip- and pulse-irrigated plants receiving a similar volume of water daily. Ebb-and-fl ood benches were filled once per day with drainage occurring 15 min after filling. Ending plant heights and dry weights indicated that those plants in the prepackaged fertilizer/drip or ebb-and-fl ood irrigation/shredded tire fiber growing medium were comparable to plants grown in the peatmoss:rockwool medium with the same fertilizer and irrigation methods.
Although citrus (Citrus spp.) is sensitive to salinity, acceptable production can be achieved with moderate salinity levels, depending on the climate, scion cultivar, rootstock, and irrigation-fertilizer management. Irrigation scheduling is a key factor in managing salinity in areas with salinity problems. Increasing irrigation frequency and applying water in excess of the crop water requirement are recommended to leach the salts and minimize the salt concentration in the root zone. Overhead sprinkler irrigation should be avoided when using water containing high levels of salts because salt residues can accumulate on the foliage and cause serious injury. Much of the leaf and trunk damage associated with direct foliar uptake of salts can be reduced by using microirrigation systems. Frequent fertilization using low rates is recommended through fertigation or broadcast application of dry fertilizers. Nutrient sources should have a relatively low salt index and not contain chloride (Cl) or sodium (Na). In areas where Na accumulates in soils, application of calcium (Ca) sources (e.g., gypsum) has been found to reduce the deleterious effect of Na and improve plant growth under saline conditions. Adapting plants to saline environments and increasing salt tolerance through breeding and genetic manipulation is another important method for managing salinity.
To reduce nitrogen (N) losses from vegetable fields, fertilizer recommendations should be adjusted according to the large range in yield and thus in N uptake of vegetable crops. Therefore, a model was used to predict total N uptake based on expected yield. The model has been validated successfully in a series of studies for Brussels sprouts (Brassica oleracea L. var. gemmifera), white cabbage (Brassica oleracea L. var. capitata) and kohlrabi (Brassica oleracea L. var. gongylodes). The objective of this study was to validate the model for table beet (Beta vulgaris L. var. conditiva), a crop with a considerable variability in N uptake, which is caused by a large potential range of selecting sowing dates, plant densities and cultivars. Field experiments were carried out over two years. Fifty-five combinations of N fertilizer levels, plant densities, cultivars and sowing dates were tested. Plants were sampled at 2- or 3-week intervals, and fresh matter, dry matter and N content of leaves and roots were measured. Crop specific model parameters for table beets were determined from independent data. The model wverestimated N uptake for N-limiting conditions, but for optimally fertilized table beets measured and estimated N uptake showed a close correlation (R 2 = 0.93) when total yield was used as an input parameter for the model. Although the error of estimation (35 kg·ha-1) was considerable, studies with other vegetable crops using the model found the error even higher if other tools, such as look-up tables, were used for predicting N uptake.
Containerized plants of Heliconia psittacorum L.f. × H. spathocircinata Aristeguieta `Golden Torch' were grown in a greenhouse for 8 months from early summer to winter under selected combinations of N, P, and K. Fertilizer rates ranged from zero to rates that exceeded those reported in the literature by 50% to 100%. Biomass variables (vegetative and inflorescence dry weight, and leaf area) were predicted to be maximized at high N and high N to P, and N to K ratios corresponding to N-P-K application rates of 1.2, 0.5, and 0.6 kg·m-3, respectively (≈2:1:1). However, the number of shoots and flowers produced per rhizome were maximal at lower N to K ratios (1:1). Flower yield could therefore be optimized with appropriate fertilization, provided attention was paid to the N to K ratio so that the size of plants and their flowers was not compromised by efforts to increase shoot and flower number. The heavier the rhizome planted, the shorter the time for shoot emergence and flowering to occur, and the greater the number of flowers harvested. However, rhizome weight had no effect on number of shoots to emerge. The probability of shoots flowering declined markedly with order of shoot emergence, although this could be increased with appropriate mineral nutrition. The maximum number of leaves subtending the inflorescence (seven) was obtained at high N and P rates. Flower production was probably limited by declining solar radiation in autumn, and by within-plant competition for rooting space.
Field research was conducted to determine the effects of N, Fe, and benzyladenine (BA) on fall performance, post-dormancy recovery, and storage nonstructural carbohydrate composition of `Midiron' bermudagrass [Cy - nodon dactylon (L.) Pers.]. Fall green color retention and turf quality were superior for 48 than for 24 kg N/ha per month. Nitrogen level did not affect post-dormancy recovery or nonstructural carbohydrate levels in stolons and rhizomes measured in Sept. and Nov. 1983 and 1984. Iron level did not influence turf color and quality during summer months. Biweekly application of 0.6 kg Fe/ha produced better retention of greenness and turf quality during Fall 1983 and 1984 and superior turf color in Spring 1985 than the 0 kg Fe/ha treatment. Better green turf coverage was obtained with the biweekly than the monthly Fe (1.2 kg-ha-l) treatment during Fall 1983. In contrast, monthly Fe produced color and turf quality similar to that of the biweekly Fe treatment during Fall 1984. Nonstructural carbohydrates were similar among Fe levels in 1983 and 1984. The effects of Fe on turf color and quality were similar at each level of N and BA. BA level did not consistently influence turf color or quality and did not affect storage carbohydrate levels. When used in conjunction with moderate summer N fertilization, foliar-applied Fe can extend bermudagrass quality during fall without adversely affecting postdormancy recovery. Chemical name used: N- (phenylmethyl)-lH-purin-6-amine (benzyladenine, BA).