Search Results

You are looking at 131 - 140 of 414 items for :

  • "leaf water potential" x
Clear All

Responses of four sweetpotato genotypes (`Centennial', `Travis', `Vardaman' and `MS 21-2') to water stress were studied. Two irrigation regimes (irrigation vs non-irrigation) were imposed on five-week old cuttings grown in a greenhouse environment. Transpiration and leaf diffusive resistance (LDR) were measured with a steady state porometer and mid-day total leaf water potentials were determined with a thermocouple psychrometer. Leaf growth was inhibited earlier than root growth. Water stress caused a reduction of leaf size in Centennial and in leaf number in the other three. Storage root number of Vardaman was not inhibited by limited soil moisture but development of storage roots was retarded by water stress. Total growth under non-irrigation of MS 21-2 was inhibited more than Vardaman. Mid-day leaf water potential did not show promise as a good indicator of water status. Genotypic differences in the water stress sensitivity as measured by LDR, were observed.

Free access

The effectiveness of antitranspirant type and concentration on the leaf water relations of Saliva splendens F. `Firebird and Petunia × hybrida Juss. `Comanche'. Two film-forming antitranspirants, Cloud Cover and Folicote, were tested at three different concentrations in two different environments. The leaf water potential, stomatal conductance, and relative water content were evaluated. Transpiration per unit vapor pressure deficit and stomatal conductance for both crops decrease slightly but there was no trend with respect to the film type, environment or concentration rate. The leaf water potentials and relative water content did not show significant difference after antitranspirant application. In order for antitranspirant application to be of benefit to the growth of herbaceous plants, a more durable coating that remains semipermeable would have to be utilized.

Free access

The effect of flooding on container-grown `Tommy Atkins' mango (Mangifera indica L.) trees on two rootstock, and on container-grown seedling `Peach' mango trees, was investigated by evaluating vegetative growth, net gas exchange, and leaf water potential. In general, flooding simultaneously reduced net CO2 assimilation (A) and stomatal conductance (gs) after 2 to 3 days. However, flooding did not affect leaf water potential, shoot extension growth, or shoot dry weight, but stem radial growth and root dry weight were reduced, resulting in larger shoot: root ratios for flooded trees. Mortality of flooded trees ranged from 0% to 45% and was not related to-rootstock scion combination. Hypertrophied lenticels were observed on trees that survived flooding but not on trees that died. The reductions in gas exchange, vegetative growth, and the variable tree mortality indicate that mango is not highly flood-tolerant but appears to possess certain adaptations to flooded soil conditions.

Free access
Authors: and

Abstract

The water relations of mycorrhizal onions (Allium cepa L.) were compared with those of non-mycorrhizal controls grown under low and high soil phosphorus conditions. Mycorrhizal plants had higher leaf water potentials, higher transpiration rates, higher hydraulic conductivities and lower leaf resistances than did non-mycorrhizal plants grown in low soil phosphorus conditions. When controls were grown under high soil phosphorus conditions, all 4 parameters were not different from those of mycorrhizal plants. The magnitude of the effect of mycorrhizal fungi on the water relations of the host may, in part, be a function of phosphorus nutrition. The differences in leaf water potentials, transpiration rates and leaf resistances are considered to be the result of the differences found in hydraulic conductivities.

Open Access

Abstract

Leaf water potentials did not limit stomatal opening of Vitis labruscana Bailey cv. Concord during the summers of 1972 and 1973 in a New York vineyard. Midday leaf-water potentials ranged from −8 to −16 bars and were closely related to individual leaf irradiance. The diurnal variation of leaf, stem, and fruit cluster water potentials on a typical clear day were about 5, 11, and 6 bars, respectively. Water potential gradients at midday across the root, shoot, and petiole-leaf systems averaged about 10, 1 and 3 bars, respectively. The gradient across the root consistently increased throughout the day relative to plant transpiration rate. Minimum stomatal resistance on days after cold nights (less than 10°C) was 2.7 ± 1.1 s cm-1, while the mean resistance on all other days was 1.0 ± 0.5 s cm-1. Cool night temperatures inhibited stomatal opening and closing independently of leaf water potential.

Open Access

Abstract

Performance of open-top chambers used for air pollutant effect studies on mature grapevines (Vitis labruscana Bailey cv. Concord) was evaluated. The chamber environment was characterized by somewhat higher air temperature and dew point and decreased light intensity and wind velocity compared with ambient conditions. Within the chambers, grapevines had slightly increased leaf temperature. No differences due to chambers were detected on vine stomatal resistance, leaf water potential, or the relationship between leaf temperature and incident radiation.

Open Access

Abstract

A modified Scholander pressure bomb was sensitive enough to detect significant differences in relative leaf water stress among ‘Orlando’ tangelo (Citrus reticulata Blanco × C. paradisi Mact) on several rootstocks. Leaf water potential for the rootstocks ranged from -7.9 bars for rough lemon (Citrus jambhiri Lush.) to -13.7 bars for those on trifoliate orange (Poncirus trifoliata Raf.). There was a diurnal pattern in leaf water stress. Modifications and procedures for the pressure bomb measurements are described.

Open Access

The response of foliage-air temperature differential (Tl-Ta) to vapor-pressure deficit (VPD) as a means of detecting incipient water stress was investigated in the Illinois planting of the NC-140 Uniform Peach Rootstock Trial. Stomatal conductance, foliage temperature, leaf water potential, air temperature and VPD were followed diurnally on three dates in 1989 for mature `Redhaven' on six different rootstock. On two of three sampling dates where predawn leaf water potential was greater than -0.5 MPa there was no indication of midday stomatal closure and all rootstock exhibited an inverse relationship between T1-Ta and VPD. On the date with the most negative predawn leaf water potential, T1-Ta of two plum rootstock (GF-677 and GF-655-2) was observed to be significantly greater at VPD levels above 2 kPa than the remaining rootstock. All rootstock on this date exhibited greater T1-Ta than at similar VPD levels on the other two dates. These data suggest that transpirational cooling plays a large enough role in foliage temperature regulation of `Redhaven' peach such that incipient water stress and rootstock effects on water relations can be detected through increases in foliage temperature.

Free access

Gas exchange and growth of transplanted and nontransplanted, field-grown Norway maple (Acer platanoides L. `Schwedleri') and littleleaf linden (Tilia cordata Mill. `Greenspire') trees were investigated in an arid climate. In the spring of 1995, three trees of each species were moved with a tree spade to a new location within a field nursery and three nontransplanted trees were selected as controls. Predawn leaf water potential, morning-to-evening stomatal conductance and leaf temperature, leaf-to-air vapor pressure difference, midday stomatal conductance and photosynthetic rate, and growth data were collected over a 2-year period. After transplanting, weekly predawn leaf water potential indicated that transplanted trees were under greater water stress than were nontransplanted (control) trees. However, predawn leaf water potential of maple trees recovered to control levels 18 weeks after transplanting, while that of transplanted linden trees remained more negative than that of controls. In 1995, stomatal conductance and photosynthetic rates were lower throughout the day for transplanted trees. In 1996, gas exchange rates of transplanted maple trees recovered to near control levels while rates for transplanted linden trees did not. Sensitivity of stomata to leaf-to-air vapor pressure difference varied with species and with transplant treatment. Each year transplanted trees of both species had less apical growth than did control trees. Although gas exchange and apical growth of transplanted trees was reduced following transplanting, recovery of gas exchange to control rates differed with species.

Free access

Abbreviations: CER, carbon exchange rate; FC, fabric containers; FG, field grown; PC, plastic containers; Ψ leaf , leaf water potential. 1 Current address: Urban Horticulture Institute, 20 Plant Science Bldg., Cornell Univ., Ithaca, NY 14853

Free access