Abstract
Previous research showed a relationship between viability and electrolyte leakage; here, we develop an index of viability based on electrolyte leakage from sample populations of seeds soaked in deionized distilled water. Conductivity of leachates from individual seeds was determined for 10 lots of lettuce (Lactuca sativa L.), each germinating at 99%. Conductivity data for two lots of soybean (Glycine max L.) seeds germinating at 100% and 74%, respectively, were obtained from literature. Cumulative frequency distributions (CFD) with a class interval of one µA, were fitted with a natural logarithmic form of the Richards function, which requires no arbitrary starting values. The procedure provided an effective estimation of slopes [(dCF/dµA)MAX] of hypothetical lines tangent to inflection points of the respective sigmoidal CFD curves. We suggest that this maximum slope, or internal slope can be used as a seed viability index. The index is unaffected by outlier µA readings and reflects the shape of the CFD. It is also a measure of seed-to-seed variability in leachate conductivity. The se of the 10 internal slopes derived from the 10 lettuce seed lots was 3.8. The viability index is sensitive, since nearly a four-fold difference in internal slope was found for the two soybean seed lots. The greater the internal slope, the less the variation among individual seed conductivities and the higher the seed quality.
Abstract
The objective of this study was to determine the relationship between seed density and seed quality of vegetable seeds hydrated by imbibing or priming procedures. Species studied were: lettuce (Lactuca sativa L.), tomato (Lycopersicon esculentum Mill.), onion (Allium cepa L.), cabbage (Brassica oleracea var. capitata L.), and carrot (Daucus carota L.). Seeds of each crop were soaked in either aerated distilled water at 25C (imbibed seeds) or polyethylene glycol (PEG) 8000 at 15C (primed seeds). After soaking, seeds were separated into density classes with a float-sink procedure using aqueous solutions of Maltrin 600 (Maltrin 500 for lettuce) with 0.02 g·cm−3 density increments. Significant (P > 0.01) positive relationships were determined between seed density classes and germination percentages for lettuce, tomato, and onion seeds, whether separated after imbibition (R 2 = 0.93, 0.83, and 0.66, respectively) or after priming (R 2 = 0.95, 0.94, and 0.91, respectively). High-density classes of hydrated lettuce, tomato, and onion seeds in either the imbibed or primed treatment usually exhibited faster and more uniform rates of radicle emergence and, after 6 days, had longer hypocotyls (cotyledon for onions) than low-density classes. The significant quality differences exhibited among the density classes of lettuce, tomato, and onion seeds after priming will enable seedlots of these species to be upgraded by discarding the low-density, poor-quality seeds.
Abstract
The effects of soil moisture deficit on yield and quality of head lettuce seed (Lactuca sativa L.) were studied. Three moisture levels (−0.3, −0.8 and −5.0 bars) were imposed upon lettuce plants continuously or in various combinations during vegetative and reproductive growth. Highest seed yields were obtained from treatments of intermediate water deficit during vegetative growth. Severe stress significantly reduced seed yields when introduced during either vegetative or reproductive growth. These treatments resulted in the lowest average number of seeds/seed head and seed heads/plant. Average seed weights were highest from plants exposed to severe stress for extended periods. Lowest average seed weights were produced on plants grown in adequate moisture treatments. Seed length, width, thickness and volume correlated with seed weight in response to soil moisture deficits. Germination was high in all treatments (97-100%). The lowest percentage abnormal seedlings observed during germination were obtained from seed developed on plants in severe and intermediate water deficit treatments. Seeds from these same treatments also produced the most vigorous seedlings, based on radicle length. Moisture levels conducive to highest seed yield generally produced lower quality seeds. Intermediate water deficits during vegetative and reproductive growth of lettuce plants appear to produce highest seed yields together with adequate seed quality.
Science and Technology is one that gives a good overview of the whole area of seed development, dormancy and germination, including hormonal regulation of seed germination as well as seed quality aspects such as testing, seed vigor, seed-borne pathogens
programs and international working groups.” “Mark explained relationships among seed quality, stand establishment, and system productivity and helped steer improvements in all through independent and collaborative efforts. Mark bridged research, real
This study was conducted to identify the chromosomal location and magnitude of effect of quantitative trait loci (QTL) controlling sweet corn (Zea mays L.) stand establishment and investigate the impact of dry kernel characteristics on seedling emergence under field conditions. Genetic and chemical analysis was performed on two F2:3 populations (one homozygous for su1 and segregating for se1, the other homozygous for sh2 endosperm carbohydrate mutations) derived from crosses between parental inbreds that differed in field emergence and kernel chemical composition. A series of restriction fragment-length polymorphism (RFLP) and phenotypic markers distributed throughout the sweet corn genome were used to construct a genetic linkage map for each population. F2:3 families from the two populations were evaluated for seedling emergence and growth rate at four locations. Mature dry kernels of each family were assayed for kernel chemical and physiological parameters. Composite interval analysis revealed significant QTL associations with emergence and kernel chemical and physiological variables. Improved emergence was positively correlated with lower seed leachate conductivity, greater embryo dry weight, and higher kernel starch content. QTL affecting both field emergence and kernel characteristics were detected in both populations. In the su1 se1 population genomic regions significantly influencing emergence across all four environments were found associated with the se1 gene on chromosome 2 and the RFLP loci php200020 on chromosome 7 and umc160 on chromosome 8. In the sh2 population the RFLP loci umc131 on chromosome 2 and bnl9.08 on chromosome 8 were linked to QTL significantly affecting emergence. Since seedling emergence and kernel sugar content have been shown to be negatively correlated, undesirable effects on sweet corn eating quality associated with each emergence QTL is discussed. Segregating QTL linked to RFLP loci in these populations that exert significant effects on the studied traits are candidates for molecular marker-assisted selection to improve sweet corn seed quality.
Sweet corn (Zea mays L.) and tomato (Lycopersicon esculentum Mill.) seeds were aged naturally for 18 months or artificially aged using saturated salt accelerated aging to provide seed lots that differed in seed vigor, but retained a high standard germination percentage. Seed vigor was confirmed using standard vigor tests, including time to radicle emergence, cold, and accelerated aging tests. Ethylene evolution from both sweet corn and tomato seeds during germination was positively correlated with seed quality. Differences in ethylene evolution between nonaged and aged seeds were greater in seeds germinated on exogenous 1-aminocyclopropane-1-carboxylic acid (ACC). After 36 hours, there was about a 15-fold increase in ethylene evolution from seeds treated with 5 mm ACC compared to untreated seeds. Naturally and artificially aged seeds responded similarly and showed reduced ethylene production compared to nonaged seeds. In contrast to ethylene production, endogenous ACC titers were less for nonaged compared to aged seeds. Exogenous application of ACC to artificially aged seeds reduced the time to radicle protrusion, but did not completely reverse age-related effects on vigor. The data indicate that the reduced ability to produce ethylene in aged seeds was related to ACC oxidase (ACCO) synthesis or activity. Using Northern blot analysis, ACCO mRNA was detected after 48 hours of imbibition in nonaged seeds, but was undetectable in aged seeds affirming the contention that ACCO synthesis was delayed or reduced by aging. The current study provides additional support for ethylene as a biochemical indicator of seed vigor in seed lots with reduced vigor but high germination capacity.
Plukenetia volubilis Linneo, a tropical recurrent woody oilseed plant native to South America, was successfully introduced in China. A field experiment was conducted to determine the effect of the dry-season foliar sprays once every 2 weeks with 50 μm water or five different plant growth regulators (PGRs) viz., gibberellic acid (GA3), kinetin (KIN), indole-3-acetic acid (IAA), abscisic acid (ABA), and salicylic acid (SA) on the growth and yield of P. volubilis plants in Xishuangbanna, southwest China. Results showed that PGRs affected the leaf stomatal conductance (g S) and water-use efficiency (WUEi), rather than the net photosynthetic rate (PN). The phenological development of P. volubilis plants, including the time of flowering and maturity, and the dynamic pattern of fruit ripening, was not altered by PGR treatments. ABA and SA resulted in highest fruit set, seed oil content, and total fruit or seed oil yield, whereas GA3, IAA, and KIN were effective in increasing seed size. The nonstructural carbohydrates (NSC) are related to subsequent abscission or retention of the developing fruit, which was indicated by the positive relationship between carbohydrate concentration and fruit set across PGR treatments. The positive influences of PGRs on the total fruit yield (increased 4.3% to 15.2%) and total seed oil yield (increased 4.9% to 24.9%) per unit area throughout a growing season were found when compared with the control, depending to a great extent on the balance between vegetative and reproductive growth during the reproductive stage. This study suggests that PGRs, especially for ABA and SA, can become a valuable tool for promoting the seed oil yield of P. volubilis plants while maintaining high seed quality in the field.
Amaranths (Amaranthus sp.) are a popular leafy vegetable grown and consumed by resource-poor people in many African countries. Greater awareness of the importance of nutritious foods has increased demand by African consumers for amaranth. Presently, most African farmers grow low-yielding local varieties of variable seed quality. High-yielding amaranth varieties that are adapted to the major agro-ecologies of eastern and southern Africa possess key traits needed by male and female farmers and meet diverse market preferences are required. The objective of this study was to identify amaranth lines adapted to major amaranth production environments in Kenya and Tanzania using a gender-disaggregated farmers participatory approach to explore possible gender differences in trait and variety preferences. Twenty amaranth entries were evaluated for vegetable yield, agronomic traits, and organoleptic taste tests in replicated, farmer-participatory variety selection trials at one location in Kenya and at four locations in Tanzania. Differences among entries (G), locations (E), and G × E interaction were significant or highly significant for marketable vegetable yield. Location followed by entry was the most important factor that explained differences in yield. G and G × E interaction biplot analysis classified the five locations into two different mega-environments, mainly based on altitude, temperatures, and soil characteristics. Marketable vegetable yield was positively correlated with leaf length, plant height, and the selection scores of female and male farmers at almost all locations. Selection scores of female and male farmers were positively correlated, indicating that male and female farmers shared similar amaranth variety preferences. Farmers identified and ranked important traits that can be used by breeders to design amaranth product profiles and develop amaranth breeding objectives. Lines combining high yield with high farmer and consumer preference scores have been retained for distinctiveness, uniformity, and stability tests for possible release as commercial varieties.
Seeds developing within a locular space inside hollow fruit experience chronic exposure to a unique gaseous environment. Using two pepper cultivars, `Triton' (sweet) and `PI 140367' (hot), we investigated how the development of seeds is affected by the gases surrounding them. The atmospheric composition of the seed environment was characterized during development by analysis of samples withdrawn from the fruit locule with a gas-tight syringe. As seed weight plateaued during development, the seed environment reached its lowest O2 concentration (19%) and highest CO2 concentration (3%). We experimentally manipulated the seed environment by passing different humidified gas mixtures through the fruit locule at a rate of 60 to 90 mL·min-1. A synthetic atmosphere containing 3% CO2, 21% O2, and 76% N2 was used to represent a standard seed environment. Seeds developing inside locules supplied with this mixture had enhanced average seed weight, characterized by lower variation than in the no-flow controls due to fewer low-weight seeds. The importance of O2 in the seed microenvironment was demonstrated by reduction in seed weight when the synthetic atmosphere contained only 15% O2 and by complete arrest of embryo development when O2 was omitted from the seed atmosphere. Removal of CO2 from the synthetic atmosphere had no effect on seed weight, however, the CO2-free treatment accelerated fruit ripening by 4 days in the hot pepper. In the sweet peppers, fruit wall starch and sucrose were reduced by the CO2-free treatment. The results demonstrate that accretionary seed growth is being limited in pepper by O2 availability and suggest that variation in seed quality is attributable to localized limitations in O2 supply.