Search Results

You are looking at 121 - 130 of 2,330 items for :

Clear All

Resistance to white lupin mosaic virus (WLMV), a recently characterized member of the potyvirus group, was found in pea (Pisum sativum L.) plant introductions from Ethiopia (PI 193835) and India (PI 347485). In cross and backcross populations between plants of resistant PI 193835 with those of susceptible `Bonneville' and PP-492-5, this resistance was demonstrated to be governed by a single recessive gene. This gene was distinct from other genes previously found in PI 193835 and PP-492-5 (from PI 347492, India) conferring resistance to clover yellow vein virus (CYVV) and three strains of pea seedborne mosaic virus (PSbMV). Indirect evidence suggests that this newly recognized viral resistance gene, wlv, is a member of a cluster of closely linked genes located on chromosome 6. This gene cluster includes sbm-1, sbm-3, and sbm-4, which govern resistance to three PSbMV pathotypes, and cyv-2, which governs resistance to CYVV.

Free access

Scanning electron microscopy (SEM) was used to compare the novel surface morphology of `Marina' peach [plant introduction (PI) 133984] to a normal peach (`Contender') and a nectarine (`Sunglo'). Samples were collected before, during, and after anthesis. Compared to `Contender', `Marina' showed different trichome structure, lower trichome density, and delayed initiation of trichomes on the gynoecium. No pubescence was observed on `Sunglo' nectarine at any sampling date. Trichomes were present on the flower bud scales of all three cultivars. Arrangement and structure of trichomes on flower bud scales of `Marina' differed from those on `Contender' and `Sunglo'.

Free access

An Australian strain of passionfruit woodiness potyvirus (PWV-K) infected peas and caused a light to moderate mosaic consisting of chlorotic spots, veinal chlorosis, and some plant stunting. Resistance to PWV-K was found in pea cultivars and plant introductions (PI) known to be resistant to bean yellow mosaic virus (BYMV). In cross and backcross populations involving the resistant cultivar Bonneville (United States) and PI 140295 (Iran) with the susceptible cultivar Ranger, a single recessive gene was responsible for the high level of resistance to PWV-K. From crosses involving PI 391630 (China), which is resistant to BYMV but susceptible to PWV-K, and the cultivar Bonneville (resistant to both viruses), it was evident that different genetic factors conferred resistance to these two potyviruses. The symbol pwv is tentatively assigned to this newly recognized pea resistance gene. Three other Australian strains of PWV did not infect peas.

Free access
Authors: and

A single seedling exhibiting a semidwarf growth habit was found in an open-pollinated clingstone peach [Prunus persica (L.) Batsch] population. The growth habit was upright and open, with short, spur-like lateral branching. Tree size was about half that of its siblings as a result of shorter internodes. The total number of nodes on first-order branches was not significantly different from that on standard-sized trees. The semidwarf growth habit remained stable after vegetative propagation. Segregation in sexual progeny showed the trait to be highly heritable.

Free access

The heritability of shortened fruit maturation (SFM) period in Cornell 871213-1, an inbred cherry tomato [Lycopersicon esculentum var. cerasiforme (Dunal.) A. Gray] line, was estimated from a greenhouse experiment. Cornell 871213-1 was crossed with the cherry tomato line NC 21C-1. Mean fruit maturation period (FMP) (days from anthesis to the breaker stage of fruit color) was 40.8 days for NC 21C-1 and 32.0 days for Cornell 871213-1. Parental, F1, F2, and backcross generations all differed in mean FMP and yielded, estimates of broad- and narrow-sense SFM heritabilities of 72% and 40%, respectively, on a single-plant basis. A test for midparent heterosis showed significance. Genetic control of SFM was quantitative in nature and highly dominant. A field study of an F2 population developed from the cross Cornell 871213-1 × NC 84173, the latter a large-fruited tomato line (Lycopersicon esculentum Mill.), gave a mean FMP of 48.4 and 31.2 days for NC 84173 and Cornell 871213-1, respectively. The F1 and F2 generations had FMP of 33.1 and 34.7 days, respectively. The parents, F1, and F2 generations all differed in FMP. Parental, F1, and F2 generations yielded an estimate of broad-sense SFM heritability of 64% on a single-plant basis. F3 progenies from selected F2 s were grown in a greenhouse, and F3-F2 regression analysis gave a narrow-sense SFM heritability of 39%. Parental means differed from each other and from the F1 and F2 means for period from sowing to anthesis, fruit weight, and locule number. F1 and F2 means did not differ for any trait and were far below the midparent values, approaching Cornell 871213-1 for each trait except for the number of days from sowing to anthesis. Significant correlations existed in the F2 generation between FMP and fruit weight (0.61) and between fruit weight and locule number (0.69). Significant correlations existed between selected F2s and their F3 progeny for FMP (0.53), fruit weight (0.78), and days from sowing to anthesis (0.78). In the F3 generation, a significant correlation occurred between FMP and fruit weight (0.48). F3-F2 regression and realized heritabilities were used as two estimates of narrow-sense heritability (29% and 31%, respectively) for days from sowing to anthesis.

Free access

Resistance to blighting by Monilinia vaccinii-corymbosi (Reade) Honey was evaluated under greenhouse conditions in multiple populations of the diploid species Vaccinium boreale Hall & Aalders, V. corymbosum L., V. darrowi Camp, V. elliottii Chapm., V. myrtilloides Michx., V. myrtillus L., V. pallidum Ait., and V. tenellum Ait., as well as in accessions of the polyploid species 4x V. hirsutum Buckley and 6x V. corymbosum f. amoenum Aiton. Significant species differences were found in mean blighting levels averaged over 2 years, with values ranging from 3.5% for V. boreale to 49.2% for 2x V. corymbosum, compared with 27.5% for the resistant 4x V. corymbosum check, `Bluejay', and 64.3% for the susceptible 4x V. corymbosum check, `Blueray'. Wild Vaccinium species may serve as new sources of resistance to blighting, if resistance can be transferred easily and horticultural type recovered.

Free access
Author:

Passionfruit woodiness virus (PWV) can infect bean (Phaseolus vulgaris L.), causing a light and dark green foliar mosaic, veinbanding, downward curling, and plant stunting. The intensity of these symptoms can vary with the strain of the virus and cultivar, but they resemble those caused by bean common mosaic virus. In genetic populations derived from crosses and backcrosses involving cultivars that are resistant (`Black Turtle 1', `Clipper', and `RedKote') or susceptible (`Black Turtle 2', `California Light Red Kidney', and `Pioneer'), a single dominant gene conferred resistance to an Australian strain PWV-K. To this gene, the symbol Pwv (Passionfruit woodiness virus) is tentatively assigned. In plants derived from rooted cuttings of backcross populations, the same factor also conditioned resistance to three other Australian strains, PWV-Mild, PWV-51, and PWV-Tip Blight.

Free access

The ornamental value of caladium (Caladium ×hortulanum Birdsey) depends primarily on leaf characteristics, including leaf shape and main vein color. Caladium leaf shapes are closely associated with plant growth habit, stress tolerance, and tuber yield; leaf main vein colors are often used for cultivar identification. Thirty-eight crosses were made among 10 cultivars and two breeding lines; their progeny were analyzed to understand the inheritance of leaf shape and main vein color and to determine if there is a genetic linkage between these two traits. Results showed that a single locus with three alleles determined the main vein color in caladium. The locus was designated as V, with alleles V r, V w, and V g for red, white, and green main veins, respectively. The white vein allele was dominant over the green vein allele, but it was recessive to the red vein allele, which was dominant over both white and green vein alleles; thus the dominance order of the alleles is V r > V w > V g. Segregation data indicated that four major red-veined cultivars were heterozygous with the genotype Vr V g, and that one white-veined cultivar was homozygous and one other white-veined cultivar and one breeding line were heterozygous. The observed segregation data confirmed that the three leaf shapes in caladium were controlled by two co-dominant alleles at one locus, designated as F and f, for fancy and strap leaves, respectively. The skewedness of leaf shape segregation in some of the crosses implied the existence of other factors that might contribute to the formation of leaf shape. Contingency chi-square tests for independence revealed that caladium leaf shape and main vein color were inherited independently. The chi-square tests for goodness-of-fit indicated that the five observed segregation patterns for leaf shape and main vein color fit well to the expected ratio assuming that two co-dominant and three dominant/recessive alleles control leaf shape and main vein color and they are inherited independently.

Free access

Fusarium root rot is a major limiting factor in snap bean (Phaseolus vulgaris L.) production. The level of genetic resistance in commercial bean cultivars is minimal and disease is frequently exacerbated by environmental factors. We investigated the contribution of vigorous, adventitious roots to enhancing root rot tolerance in snap bean. Seedling root system architecture was evaluated in 17 recombinant inbred lines (RILs) from a cross of a resistant snap bean line (FR266) and a susceptible dry bean cultivar (Montcalm). The RILs varied in tolerance to Fusarium root rot. Although overall length and branching density (as measured by fractal dimension and meristem numbers) of root systems were not related to root rot resistance, the lateral root number at the root: shoot interface was positively correlated with genotype tolerance (R 2 = 0.6*). Root diameter was also positively correlated with tolerance; this is consistent with the hypothesis that larger adventitious and basal roots are beneficial under disease stress. A field-based study of commercial snap bean cultivars compared raised and flat-bed systems of production, in a soil inoculated with Fusarium solani f. sp. phaseoli. Substantially greater yields (40% to 90%) were observed in raised beds. Root vigor was relatively high (root length density >0.2 cm·cm−3) and root rot scores were lower with raised than with flat-beds, in 2001, but not in 2000. Overall, this is suggestive that integrated crop management practices can improve lateral root vigor and reduce root rot severity.

Free access