One of the major misconceptions in contemporary society is the widespread belief that our food supply is unsafe. The public's perception of risk is quite different than scientific assessment of risk. While scientists see microbial contamination as the key issue (100 to 10,000X greater risk than from exposure to pesticide residues), consumers appear to be most concerned about the effects of synthetic pesticides and fertilizers in the food they buy. Consumers equate “synthetic” with harmful or bad and “natural” with safe or good, yet they ignore the fact that 99.9% of all pesticides humans are exposed to are naturally occurring. Americans eat approximately 1.5 g. of natural pesticides per person per day, or about 10,000 times more than synthetic pesticide residues. Although few plant toxins have been tested for carcinogenicity so far, of those tested about half are rodent carcinogens. Contrary to public perception, environmental pollution accounts for only 2% of all cancers. By contrast, smoking, diet and other personal lifestyle choices account for more than 75%.
Passion fruit has become a popular addition to our diet and is currently grown in the United States. Passion fruit shelf life could be extended if green mature fruit can be induced to ripen after exposure to ethylene. Greenhouse grown purple passion fruits were harvested in a green mature stage 55 and 60 days after anthesis (DAA) and stored for 10 days at 10°C. After storage half of the fruits were treated with 10 ppm ethylene for 35 hours and stored at room temperature (21°C) for 48 hours. The juice of treated and non-treated fruit was analyzed for comparison with juice of vine-ripened fruit. Total soluble solids and pH of the juice did not differ in green mature fruits harvested 55 and 60 DAA.. compared to vine-ripened fruits (70-80 DAA). Sucrose content decreased and fructose and glucose increased after storage, regardless of ethylene treatment. Fruits harvested 55 and 60 DAA, with or without ethylene and stored for 10 days, developed the same sugar content, soluble solids and pH as those that ripened on the vine.
CowPea (Vigna unguiculata (L.) Walp.) is a candidate species for inclusion in a space-deployed Controlled Ecological Life Support System (CELSS) because it contributes to a balanced diet with its moderate protein content, high complex carbohydrate content, and low fat content, and because leaves and unripe pods as well as dry seeds are edible. Pour harvest scenarios were compared in the experimental line IT84S-2246 under controlled conditions with and without CO2 enrichment. Plants kept vegetative by removal of flowers and periodically stripped of fully expanded leaves yielded as much as either mixed-harvest scenario in which leaves were stripped at either 1- or 2-week intervals until pods started forming. The 2-week harvest scenario outyielded the 1-week scenario by 15 to 25%. The seed-only control produced the same amount of seeds as the 2-week leaf harvest scenario, but had lower total edible biomass because leaves were not harvested. Under 1000 ppm CO2, all treatments yielded from 30 to 70% more edible biomass than under non-CO2-enriched conditions. Research sponsored by NASA Cooperative Agreement NCC 2-100.
Abstract
Starch granules were extracted from maize (Zea mays L.) endosperm of mature F2 kernels of IA5125 × IA453 normal, amylose-extender (ae), dull (du) waxy (wx), and ae du wx and from ae du wx F2 kernels harvested at the fresh market stage of development. Samples were digested for 1.5 hours with hog pancreatic α- amylase and Rhizopus II amyloglucosidase. The mature and immature ae du wx samples were usually digested significantly more than the other 4 genotypes, while ae was digested significantly less than the others. Digestion of starch granules from mature and immature ae du wx kernels did not differ. The sweet corn background used had little effect, since our observations of the single mutant genotypes were similar to those in a dent background. Clearly, ae du wx starch granules do not reflect the reduced digestibility associated with ae, and thus cultivars homozygous for ae du wx are not inferior with respect to their ability to supply carbohydrates to the diet.
The importance of folic acid in the human diet has been recognized in recent years by major increases in government recommended allowances. Red beet (Beta vulgaris L.) is an important vegetable source of folic acid, however little is known about the extent of variation for native folic acid content in red beet germplasm. A total of 18 red beet entries, including 11 hybrids (F1) and seven open-pollinated cultivars (OP), were evaluated for free folic acid content (FFAC) in replicated field experiments during 1993 and 1994. Significant differences among entries were detected in all studies. FFAC ranged from 3.3 to 15.2 μg·g-1 on a dry mass basis. A significant entry × year interaction was detected. Changes in rank of entries between years were minimal among F1 hybrids, while the changes in rank among OP cultivars were large. These data demonstrate significant variability among cultivated red beet germplasm sources for FFAC. Entries with high FFAC may be useful for increasing levels of this vitamin in red beet.
Chlorophyll and carotenoid pigments were measured with high-performance liquid chromatography (HPLC) during leaf development in kale (Brassicaoleracea L. var. acephala D.C). Lutein and β-carotene are two plant-derived carotenoids that possess important human health properties. Diets high in these carotenoids are associated with a reduced risk of cancer, cataracts, and age-related macular degeneration. Kale plants were growth-chamber grown in nutrient solution culture at 20 °C under 500 μmol·m-2·s-1 of irradiance. Pigments were measured in young (<1 week), immature (1-2 weeks), mature (2-3 weeks), fully developed (3-4 weeks) and senescing (>4 weeks) leaves. Significant differences were measured for all four pigments during leaf development. Accumulation of the pigments followed a quadratic trend, with maximum accumulation occurring between the first and third week of leaf age. The highest concentrations of lutein were recorded in 1- to 2-week-old leaves at 15.1 mg per 100 g fresh weight. The remaining pigments reached maximum levels at 2-3 weeks, with β-carotene at 11.6 mg per 100 g, chlorophyll a at 251.4 mg per 100 g, and chlorophyll b at 56.9 mg per 100 g fresh weight. Identifying changes in carotenoid and chlorophyll accumulation over developmental stages in leaf tissues is applicable to “baby” leafy greens and traditional production practices for fresh markets.
Vegetable crops can be significant sources of nutritionally important dietary carotenoids and Brassica vegetables are sources that also exhibit antioxidant and anticarcinogenic activity. The family Brassicaceae contains a diverse group of plant species commercially important in many parts of the world. The six economically important Brassica species are closely related genetically. Three diploid species (B. nigra, B. rapa, and B. oleracea) are the natural progenitors of the allotetraploid species (B. juncea, B. napus, and B. carinata). The objective of this study was to characterize the accumulation of important dietary carotenoid pigments among the genetically related Brassica species. The HPLC quantification revealed significant differences in carotenoid and chlorophyll pigment accumulation among the Brassica species. Brassica nigra accumulated the highest concentrations of lutein, 5,6-epoxy lutein, violaxanthin, and neoxanthin. The highest concentrations of beta-carotene and total chlorophyll were found in B. juncea. Brassica rapa accumulated the highest concentrations of zeaxanthin and antheraxanthin. For each of the pigments analyzed, the diploid Brassica species accumulated higher concentrations, on average, than the amphidiploid species. Brassicas convey unique health attributes when consumed in the diet. Identification of genetic relationships among the Brassica species would be beneficial information for improvement programs designed to increase carotenoid values.
Fatty acid is known as a physiologically active compound, and its composition in rice may affect human health in countries where rice is the major diet. The fatty acid composition in brown rice of 120 Korean native cultivars was determined by one-step extraction/methylation method and GC. The average composition of 9 detectable fatty acids in tested rice cultivars were as followings: myristic acid; 0.6%, palmitic acid; 21.2%, stearic acid; 1.8%, oleic acid; 36.5%, linoleic acid; 36.3%, linolenic acid; 1.7%, arachidic acid; 0.5%, behenic acid; 0.4%, and lignoceric acid; 0.9%. Major fatty acids were palmitic, oleic and linoleic acid, which composed around 94%. The rice cultivar with the highest linolenic acid was cv. Jonajo (2.1%), and cvs. Pochoenjangmebye and Sandudo showed the highest composition of palmitic (23.4%) and oleic acid (44.8%), respectively. Cultivar Pochuenjangmebye exhitibed the highest composition of saturated fatty acid (28.1%), while cvs. Sandudo and Modo showed the highest mono-unsaturated (44.8%) and poly-unsaturated (42.4%) fatty acid composition, respectively. The oleic acid showed negative correlation with palmitic and linoleic acid, while positive correlation between behenic and lignoceric acids was observed.
Carotenoids are important phytochemical components of our diet and have gained recent attention as important nutritive compounds found mainly in fruits and vegetables with red, orange, and yellow hues. Lycopene is often cited as being inversely correlated with the occurrence of various cancers, in lowering rates of cardiovascular disease, and improving other various other immune responses. Antioxidant activity, specifically oxidative radical quenching power, is the putative rationale for carotenoids' involvement in disease risk reduction. It is unlikely, however, that carotenoid content and antioxidant capacity are directly correlated in the whole food since there are other antioxidants present in watermelon, such as various free amino acids. A total measure of antioxidant potential may prove to be a useful tool for measuring watermelon nutritional value and implementing pursuant breeding goals. One assay that has gained recent popularity is the oxygen radical absorbance capacity (ORAC) assay. ORAC includes two assays that separate lipophylic and hydrophilic antioxidants. Currently, most ORAC protocols use isolated compounds or freeze-dried fruit or vegetable samples. Here, the application of a standard hexane-type extraction method, which is more amenable to whole food carotenoid-containing samples, was investigated as a candidate extraction method for the ORAC assay. Variants of this method as well as of the standard ORAC extraction were compared for extraction efficiency. Finally, ORAC values were correlated with carotenoid content and shown to hold a loose negative correlation. Possible reasons for this are considered and discussed.
Cowpea [Vigna unguiculata (L.) Walp] is a multipurpose crop that provides nutrients for human and livestock diets, as well as regulates and supports ecosystem services. In developing countries, cowpea is exploited as a dual-purpose crop for its grain and fodder; it is cultivated primarily for grain and as a cover crop in industrialized countries. However, root-knot nematodes (RKNs) (Meloidogyne spp.) represent a threat to cowpea production worldwide. Thus, we screened the University of California, Riverside (UC-Riverside), cowpea mini-core collection for resistance to Meloidogyne incognita Kofoid and White (Chitwood) and M. enterolobii Yang and Eisenback to verify the potential of this collection to be used for improving RKN resistance in cowpeas. Both screenings showed significant genotypic variation and medium/high broad-sense heritability (H 2 ) estimates for most traits, and several traits were also strongly correlated. For the M. incognita screening, 86.1% of accessions showed some level of resistance based on gall score (≤3), and 77.7% based on reproduction index (RI) (25 ≤ RI ≤ 50), whereas only 10.4% and 29.8% of accessions were resistant to M. enterolobii based on gall score (≤3) and RI (25 ≤ RI ≤ 50), respectively. These results demonstrate the greater virulence of M. enterolobii than M. incognita in cowpea, and that geographic origin of germplasm was not linked to sources of resistance. Among cultivars, only US-1136 showed resistance against both nematode species, whereas 12 wild/landrace germplasms exhibited resistance to M. incognita and M. enterolobii, and can be exploited for breeding resistant cowpeas.