Search Results

You are looking at 111 - 120 of 782 items for :

  • "anthocyanin" x
Clear All
Free access

Neal Courtney-Gutterson

The biosynthetic pathway for anthocyanins has been studied using genetic, biochemical and molecular biological tools. In the past decade, the core pathway genes have been cloned; a number of genes which act to modify anthocyanin structure have been cloned more recently. The first results in color modification have been reduced flower color intensity using gene suppression methods. In particular, we have utilized chalcone synthase (CHS) and dihydroflavonol reductase (DFR) genes and sense suppression in our experimental system, Petunia hybrida, and in the commercial crops, chrysan-themum (Dendranthema morifolium) and rose (Rosa hybrida). In petunia a range of new phenotypes was obtained; genetic stability of suppressed pheno-types will be described. In chrysanthemum a white-flowering derivative of a pink-flowering variety will be described. In rose uniform, partial reduction in pigment intensity throughout the flower was observed in over a dozen trans-genie derivatives of a red-flowering variety.

Free access

Bernadine C. Strik and Arthur Poole

Timing and severity of pruning in a 30-year-old commercial `McFarlin' cranberry (Vaccinium macrocarpon Ait.) bed were studied. Treatments in 1989 and 1990 consisted of early or late pruning and heavy, moderate, light, or no pruning. Yield component data were collected in Fall 1989 and 1990, just before harvest. Time of pruning did not affect yield components. In 1989, the unpruned and lightly pruned vines had a higher total plant fresh weight, fewer berries, higher berry yield, longer and more fruiting uprights, and fewer nonfruiting uprights (U,) compared with moderately or heavily pruned vines. Average length of UN and anthocyanin content of berries in 1989 were not influenced by pruning. In 1990, the effects of pruning severity were similar to 1989. In 1990, unpruned vines had a lower percent fruit set and berries contained less anthocyanin than pruned vines. Annual pruning with conventional systems in use decreases yield.

Free access

D.R. Rudell, J.P. Mattheis, X. Fan and J.K. Fellman

Effects of artificial ultraviolet-visible light and methyl jasmonate (MJ) treatment on `Fuji' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] fruit peel anthocyanin, phenolic, carotenoid, and chlorophyll production were examined using tristimulus color analysis and reverse-phase high performance liquid chromatography. Anthocyanin synthesis was enhanced by light and MJ treatment. Chlorogenic acid and most cyanidin, quercetin, and phloretin glycosides increased with MJ treatment concentration. Light alone also promoted increased production of most of these compounds. Production of catechin, (-)epicatechin, quercetin, and quercetrin was not enhanced by either light or MJ treatment. Light and MJ enhanced ß-carotene and chlorophyll b, synthesis but not xanthophyll or chlorophyll a synthesis. The chlorophyll a/b ratio decreased with MJ dosage. Results suggest MJ may provide a viable means of enhancing apple fruit coloration and other photoprotective mechanisms. Chemical name used: methyl 3-oxo-2-(2-pentenyl)cyclopentane-1-acetate (methyl jasmonate).

Free access

Zhiguo Ju

Delicious apples were harvested and analyzed every 7 days from the start of fruit coloration to commercial harvest. Chalcone synthase (CS) activity increased from 521 to 4120 fkat/g protein during 30 days, while UDPG glucosyltransferase (UDPGTF) activity increased from 0 to 6570 fkat/g protein. These changes significantly correlated with anthocyanin synthesis in fruit skin. Ethephon enhanced activities of both enzymes for 25 days after application, but not beyond. Cycloheximide inhibited CS and UDPGTF activities by 57% and 72%, respectively, and this could not be overcome by ethephon treatment. Bagging prevented fruit from coloring, and removing bags before maturation promoted it. Activity of both enzymes was nil in bagged fruit, and increased dramatically after bag removal. Cycloheximide applied at bag removal reduced CS and UDPGTF activities 74% and 91%, respectively, and decreased anthocyanin synthesis by 82%. The results showed that both CS and UDPGTF were positively correlated with anthocyanin formation and both required de novo synthesis during fruit coloring, although CS had existed before that.

Free access

Artemio Z. Tulio Jr., Ann M. Chanon, Nithya Janakiraman, Mustafa Ozgen, Gary D. Stoner, R. Neil Reese, A. Raymond Miller and Joseph C. Scheerens

This study was conducted to determine the effects of postharvest storage temperatures on the antioxidant capacity, anthocyanin compounds, phenolic constituents, and physico-chemical properties of black raspberries. Fresh `MacBlack' berries were stored at 4, 12, 20, and 28 °C for up to 11, 6, 4, and 3 days, respectively. Results showed that higher storage temperatures promoted tissue deterioration (cellular leakage), fungal growth, and moisture loss. The levels of the two major anthocyanins, cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside, increased by up to 2.7- and 1.9-fold, respectively, with increasing storage temperatures. The antioxidant capacity of berries, as measured by FRAP and ABTS assays, increased by up to 1.5- and 1.4-fold, respectively, which was accompanied by increases in soluble solids, total sugars, total phenolics, and total anthocyanin contents. Our findings indicate that postharvest storage at higher temperatures increases the level of bioactive compounds and antioxidant capacity in black raspberries, but this increase may be due in part to moisture loss and sugar metabolism. Storage at 4 °C maintained the level of bioactive compounds and antioxidant capacity present at harvest and prolonged the effective shelf life of the product. Further studies of black raspberry bioactive components as influenced by postharvest conditions and processing procedures (e.g., IQF, freeze-drying, air-drying) are warranted.

Free access

Paola S. Cotroneo, Maria P. Russo, Manuela Ciuni, Giuseppe Reforgiato Recupero and Angela R. Lo Piero

Genes encoding chalcone synthase (CHS), anthocyanidin synthase (ANS), and UDP-glucose-flavonoid 3-O-glucosyltransferase (UFGT), some of the enzymes of anthocyanin biosynthetic pathway, were assayed in two different experiments using quantitative real-time reverse transcriptase (RT)-PCR, in order to test their transcription levels in the flesh of blood and common orange [Citrus sinensis (L.) Osbeck] fruit, and to investigate their role in anthocyanin accumulation in the same tissue. The first experiment compared a blood orange and a common orange cultivar during seven different fruit maturation stages. This was followed by the test of 11 different genotypes at the end of the winter season. Data collected from the first experiment, over the blood orange cultivar, were statistically analyzed using the Pearson correlation coefficient. Results show that CHS, ANS, and UFGT mRNA transcripts are up- and co-regulated in the blood orange cultivar, whereas they are down-regulated in the common orange cultivar. There is evidence of correspondence between the target genes expression level and the content of the pigment assessed. The second test confirms this correlation and shows that enzyme synthesis levels and pigment accumulation, in plants grown under the same environmental conditions, are dependent on the differences occurring among the genotypes tested. These results suggest that the absence of pigment in the common orange cultivars may be caused by the lack of induction on the structural genes expression. This is the first report on the characterization of the relationships between biosynthetic genes expression and fruit flesh anthocyanin content in blood oranges.

Free access

Wayne A. Mackay and Narendra Sankhla

Phlox paniculata `John Fanick' produces long lasting, dense terminal flower heads and has potential as a specialty cut flower. Quality and postharvest display life of cut flower heads depends primarily on ethylene-induced flower abscission, flower bud opening, and maintenance and development of flower color during vase life. Late events, such as flower and leaf senescence may also be detrimental to flower quality. In the control treatment, the initial red-pink and purple flower color changes to violet blue in 3 to 4 days, and may lose >50% of initial anthocyanins. Incorporating sucrose (SUC) in the vase solution not only maintained >75% of the initial floral pigments, but also promoted opening of additional flowers and anthocyanin development. Although both ethylene biosynthesis (AOA, ReTain, a.i. AVG) and action inhibitors (STS, 1-MCP) delayed flower abscission, STS and 1-MCP were relatively more effective than AOA and AVG. As in the control, newly opened flowers remained very small when treated with ethylene inhibitors, did not develop red-pink color, and exhibited only shades of violet blue color. Sucrose antagonized the effect of ethylene inhibitors. As such, the flowers in SUC+ethylene inhibitors treatments enlarged in size and developed a reddish-pink blue color. However, the flower quality in SUC alone was much superior than those in SUC+ethylene inhibitors. These results indicate that ethylene inhibitors, alone and in combination with SUC, were not of any additional value in improving postharvest performance and display life of cut phlox flower heads.

Free access

Deirdre M. Holcroft and Adel A. Kader

Anthocyanin concentrations increased in both external and internal tissues of `Selva' strawberries (Fragaria ×ananassa Duch.) stored in air at 5 °C for 10 days, but the increase was lower in fruit stored in air enriched with 10 or 20 kPa CO2. Flesh red color was less intense in CO2 storage than in air storage. Activities of phenylalanine ammonia lyase (PAL) and UDP glucose: flavonoid glucosyltransferase (GT) decreased during storage, with decreases being greater in both external and internal tissues of strawberry fruit stored in air + 20 kPa CO2 than in those kept in air. Activities of both PAL and GT in external tissues of strawberries stored in air + 10 kPa CO2 were similar to those in fruit stored in air, while enzyme activities in internal tissues more closely resembled those from fruit stored in air + 20 kPa CO2. Phenolic compounds increased during storage but were not affected by the storage atmosphere. The pH increased and titratable acidity decreased during storage; these effects were enhanced in internal tissues by the CO2 treatments, and may in turn have influenced anthocyanin expression.

Free access

Evelyn Marais, Gerard Jacobs and Deirdre M. Holcroft

`Cripps' Pink' apples (Malus ×domestica Borkh.) subjected to 72 hours of postharvest irradiation developed a better red blush with high pressure sodium (HPS) (hue angle 56.5°) than with UV-B plus incandescent (UVB+I) lamps (hue angle 70.7°). Only HPS lamps were used in subsequent experiments. The increase in red color (hue angle decrease of 14.9°) in `Braeburn' apples held at -0.5 °C for 8 weeks prior to treatment was smaller than in fruit stored for 4 weeks (hue angle decrease of 23°). No increase in color or anthocyanin concentration was observed in `Forelle' pears (Pyrus communis L.) that were similarly treated. `Forelle' pears were harvested with or without attached stem and leaves to determine whether precursor availability restricted postharvest color development. Fruit were irradiated with HPS at 20/20 °C and 20/6 °C (day/night) for 168 hours. The absence of leaves hastened the decrease in hue angle, but this was due to yellowing and not to development of red blush. Since `Forelle' pears showed no response to light after harvest, two fully red cultivars, Bon Rouge and Red Anjou, were irradiated with HPS lamps for 72 hours. Hue angle was not affected by irradiation. Thus, anthocyanin synthesis was stimulated by postharvest irradiation with HPS lights in apples, but not in pears.

Free access

Guiwen W. Cheng and Patrick J. Breen

Studies on regulation of production of phenolics in strawberry (Fragaria X ananassa Duch,) fruit were initiated by monitoring phenylalanine ammonia-lyase (PAL) activity and levels of anthocyanins, flavonoids, tannins, and other soluble phenols throughout fruit ontogeny in `Tillikum'. PAL catalyzes the first step in the biosynthesis of phenylpropanoids, which are further modified into a wide variety of phenolic compounds. Peak in PAL activity (1 mol· s-1 = 1 kat) of 90 pkat· mg-1 protein was detected at 5 and 27 days after anthesis (DAA), when fruit was green and nearly ripe, respectively. PAL activity was only ≈10% of peak values in the white berry stage, when. fruit growth was most rapid. The second peak in PAL activity was followed by a rapid drop, to nearly zero in red-ripe fruit at 30 DAA. Total soluble phenols reached a maximum level soon after anthesis, just before the first peak in PAL activity, then declined to a low constant value well in advance of fruit ripening. Similar changes were observed in levels of tannins and flavonoids that, at anthesis, accounted for 44% and 51% of the soluble phenols, respectively. The concentration of anthocyanin was very low throughout most of fruit development, but beginning at 23 DAA it increased from <0.03 to >0.53 mg·g-1 fresh weight in 3 days. This accumulation paralleled the second rise in PAL activity. Accordingly, strawberry fruit have a developmental-dependent expression of PAL activity and accumulation of phenolic substances derived from the phenylpropanoid pathway.