Search Results

You are looking at 101 - 110 of 958 items for :

Clear All
Full access

Anton J. Bongers, Lawrence A. Risse and Vincent G. Bus

Comparisons were made of the major physical and chemical characteristics of seven cultivars of apples (Malus domestica Borkh.) produced and imported into Western Europe from 13 origins. During the 1990-91 marketing season, `Delicious', `Golden Delicious', `Granny Smith', `Elstar', `Jonagold', `Gala', and `Fuji' apples were included in the study. Physical characteristics evaluated were length-to-diameter ratio, shape, external defects, internal defects, water core, bruises, firmness, blush surface, and color. Chemical characteristics evaluated were starch, juice content, soluble solids, acids, and ascorbic acid. Significant differences in some of these quality characteristics were found between the different origins. Apples produced in the United States, particularly `Delicious', had some superior quality characteristics compared to fruit from other origins.

Free access

M.S. Tian, Talebul Islam, D.G. Stevenson and D.E. Irving

Color, ethylene production and respiration of broccoli (Brassica oleracea L. var. italica) dipped in hot water (45 °C, 10 minutes; 47 °C, 7.5 minutes; and 20 °C, 10 minutes as control) were measured. Hot-water treatment (HWT) delayed yellowing. Compared to the control, ethylene production and respiration in broccoli dipped at 45 °C decreased but recovered, and rates of both were enhanced after 24 and 48 hours, respectively, at 20 °C in darkness. There was no recovery of ethylene production or respiration in broccoli dipped at 47 °C. Following HWT of 47 °C for 7.5 minutes, respiration, starch, sucrose, and soluble protein content of florets and stems decreased dramatically during the first 10 to 24 hours after harvest. At the same time, fructose contents in florets and stems increased. Glucose increased in the florets but decreased within 24 hours in stems. Thereafter, glucose and fructose in florets and stems decreased. Sucrose content in florets and stems increased dramatically within a short period of treatment (<10 hours) and then declined. Protein in HWT florets and stems decreased during the first 24 hours and then increased until 72 hours. Ammonia content was lower in HWT broccoli during the first 24 hours and then increased above the level in the controls.

Free access

J.N. Sorensen, M. Edelenbos and L. Wienberg

Yield and seed texture were studied in green peas (Pisum sativum L.) subjected to drought stress during flowering and pod filling. Field experiments were conducted with two cultivars on a sandy loam soil and drought conditions were obtained using movable rain shelters. The plants were harvested at three to five stages of maturity determined by tenderometer values and the concentration of alcohol-insoluble solids (AIS). Measured variables were related to the concentration of AIS in order to eliminate the influence of maturity when comparing between stress and nonstress conditions. Drought stress during flowering or pod filling reduced yield, but did not affect the size distribution consistently. To lessen the differences caused by variation in size distribution, all quality measurements were carried out on peas graded to 8.75 to 10.2 mm. Drought stress increased the concentration of sucrose at an AIS concentration of 140 g·kg-1. Besides the concentration of dry matter and starch the mean pea weight and testa weight did not reflect any consistency in relation to drought-stress conditions. The sensory scores for pea mealiness was not significantly increased in drought stress, and other sensory quality attributes were unaffected. In this study, the effect of drought stress on pea texture quality is weak and inconsistent when comparisons are made at the same stage of maturity. As texture quality is highly correlated to stage of maturity, the tenderometer value or AIS concentration is reliable when determining time of harvest for the production of high quality peas irrespective of drought-stress conditions during maturation.

Free access

Zhongchun Wang and Bruno Quebedeaux

Chlorophyll fluorescence measurements are providing insights into Photosystem II (PSII) quantum efficiency and hence are able to provide a good estimation of carbon assimilation under field conditions. A F2 generation of sibcross seedlings from a cross of `Goldspur' × `Redspur' were selected to identify genetic variations and the relationships among fluorescence parameters, carbon assimilation, and carbon partitioning in apple leaves. Mature leaves from extension shoots were analyzed for chlorophyll fluorescence with a CF-1000 chlorophyll fluorescence measurement system, photosynthetic rate with a LI-6200 portable photosynthesis system, and carbohydrates with a Shimadzu HPLC. Significant variations in leaf chlorophyll fluorescence parameters and photosynthetic rates were found. The ratio of Fv: Fm, an estimation of photochemical efficiency of PSII, decreased from ≈0.90 in June to ≈0.75 in September while the photosynthetic rates decreased from ≈8.5 in June to ≈4.5 μmol·m–2·s–l in September. The relationships between fluorescence parameters, photosynthesis, and carbohydrate partitioning were analyzed and the ratio of sorbitol to sucrose in relation to the efficiency of PSII and NADPH production will be discussed.

Free access

Justine E. Vanden Heuvel, Evangelos D. Leonardos, John T.A. Proctor, K. Helen Fisher and J. Alan Sullivan

Potted `Chardonnay' grapevines (Vitis vinifera L.) with either two or three shoots were grown in a greenhouse for one month and then transferred to a phytotron room, where either one or two shoots were shaded. Twenty-four days after transfer, leaves at the fifth node of either the light-adapted or shade-adapted shoot were exposed to a 2-hour pulse of 14CO2. Both light environment and number of shade shoots on the vine had a significant effect on photosynthate partitioning within the plant following a 22-hour chase. Leaves fed with 14CO2 on a light-adapted shoot translocated 26.1% and 12.7% more radioactivity to the roots and trunk, respectively, than leaves from shade-adapted shoots. Photosynthates were exported from light-adapted leaves to shade-adapted shoots (1.3% of total 14C in plant). The number of shaded shoots and the light environment of the fed leaf had a large effect on partitioning of photosynthates among ethanol-insoluble, water-soluble, and chloroform-soluble fractions within the leaf. Recovered 14C in the water-soluble fraction of the fed leaf appeared to be affected more by number of shoots than by light environment of the fed leaf. The data suggest that there is a sink effect on initial carbon partitioning patterns in grapevine leaves. Sink strength may have a greater role than light environment. A large proportion of interior leaves versus exterior leaves may be costly with respect to the carbohydrate budget of a vine.

Free access

A. Garcia-Luis, F. Fornes and J.L. Guardiola

The carbohydrate contents of the leaves of satsuma mandarin (Citrus unshiu Marc.) trees were altered before or during the low temperature flower induction period to determine the relationship between gross levels of carbohydrates and flower formation. Early removal of the fruit and girdling of the branches on either fruiting or defruited trees caused an accumulation of carbohydrates in the leaves and increased flower formation. Shading the trees resulted in a transient reduction in leaf carbohydrate levels and in a decrease in flower formation. Although a relationship between carbohydrate levels and flowering was consistently found, our results show that the gross levels of carbohydrates do not appear to limit flower formation in citrus.

Free access

Desmond R. Layne and J.A. Flore

The source-sink ratio of l-year-old, potted `Montmorency' sour cherry (Prunus cerasus) trees was manipulated by partial defoliation (D) or continuous lighting (CL) to investigate the phenomenon of end-product inhibition of photosynthesis. Within 24 hours of D, net CO2 assimilation rate (A) of the most recently expanded source leaves of D plants was significantly higher than nondefoliated (control) plants throughout the diurnal photoperiod. Between 2 and 7 days after D, A was 30% to 50% higher and stomatal conductance rate (g,) was 50% to 100% higher than in controls. Estimated carboxylation efficiency(k) and ribulose-1,5-bisphosphate (RuBP) regeneration rate increased significantly within 2 days and remained consistently higher for up to 9 days after D. Leaf starch concentration and dark respiration rate decreased but sorbitol and sucrose concentration increased after D. The diurnal decline in A in the afternoon after D may have been due to feedback inhibition from accumulation of soluble carbohydrates (sucrose and sorbitol) in the cytosol. This diurnal decline indicated that trees were sink limited. By 9 days after D, photochemical efficiency was significantly higher than in control plants. In the long term, leaf senescence was delayed as indicated by higher A and gs in combination with higher chlorophyll content up to 32 days after D. CL resulted in a significant reduction of A, gs, k, variable chlorophyll fluorescence (Fv), photochemical efficiency, and estimated RuBP regeneration rate of the most recently expanded source leaves within 1 day. During the exposure to CL, A was reduced 2- to 3-fold and k was reduced up to 4-fold. The normal linear relationship between A and gs was uncoupled under CL indicating that A was not primarily limited by gs and since internal CO2 concentration was not significantly affected, the physical limitation to A imposed by the stomata was negligible. The decrease in Fv and photochemical efficiency indicated that leaves were photoinhibited within 1 day. The decrease in instantaneous chlorophyll fluorescence after at least 1 day of CL indicated that there was a reversible regulatory mechanism whereby the damage to photosystem II reaction centers was repaired. Leaf chlorophyll content was not altered by 1,2, or 3 days of exposure to CL, indicating that photooxidation of chlorophytl did not occur. The time to full photosynthetic recovery from CL increased as the duration of exposure increased. CL plants that were photoinhibited accumulated significant starch in the chloroplast in a companion study (Layne and Flore, 1993) and it is possible that an orthophosphate limitation in the chloroplast stroma was occurring. D plants that were continuously illuminated were not photosynthetically inhibited. After 7 days of CL, plants that were then partially defoliated yet remained in CL photosynthetically recovered within 5 days to pre-CL values. Under the conditions of this investigation, end-product inhibition of A occurred in young, potted sour cherry trees but the mechanism of action in D plants was different than in CL plants.

Free access

Rosilene Barbosa de Franca, Gerson Renan de Luces Fortes and Adriano Nunes Nesi

The aim of this work was to evaluate the effect of sucrose on the in vitro muliplication of potato, cultivars Baronesa, Macaca, and Cristal. The nutrient medium used was the MS basal salts and vitamins added to 100 mg·L-1 myo-inositol. Four sucrose concentrations (20, 30, 40, and 50 g·L-1) were tested. The pH was adjusted to 5.9 before autoclaving. Each treatment had 15 explants, which were collected from the lower part of the shoot containing two buds. This material was inoculated in a 250-mL flask with 40 mL of nutrient medium. After inoculation the flasks were kept in a growth room under 25 ± 2 °C, 16-h photoperiod, and 19 μMol·m-2·s-1 radiation provided by cool-white fluorescent lamps for 30 days. This trial was designed in a randomized block with three replicates. Every 7 days, the parameters were collected as follows: number of buds, shoot length and number of shoots. It was observed that `Baronesa' presented the highest number of buds and rate of multiplication. `Cristal' had a slightly better performance for these parameters. Plants treated with sucrose at 50 g·L-1 led to a higher number of shoots. However, `Macaca' treated with sucrose at 40 g·L-1 had the highest shoot length.

Free access

Robert L. Wample and Andy Bary

Cold-hardiness evaluations and soluble and insoluble-nonstructural carbohydrate analysis of dormant Vitis vinifera L. cv. Cabernet Sauvignon buds and cane tissue indicate a positive relationship between soluble carbohydrates and primary bud cold hardiness. Seasonal variations in soluble and insoluble carbohydrates appear to be related to changes in air temperatures and the dormancy status of the tissues. No differences were found in bud cold hardiness and only limited differences in carbohydrate levels of buds or stem tissues collected over 3 years from early harvest, normal harvest, or unharvested vines. These findings contrast with the widely held opinion that delayed harvest or failure to remove fruit results in reduced cold hardiness as a consequence of low storage carbohydrate content of the plants.

Free access

Giuseppe Cimò, Riccardo Lo Bianco, Pedro Gonzalez, Wije Bandaranayake, Edgardo Etxeberria and James P. Syvertsen

overaccumulation of carbohydrates in leaves ( Bove, 2006 ; Garnier and Bove, 1983 ). The earliest visible symptoms of HLB in leaves are vein yellowing and asymmetrical chlorosis referred to as “blotchy mottle,” thought to be the result of starch accumulation