Search Results

You are looking at 101 - 110 of 1,696 items for :

  • floriculture x
Clear All
Free access

U.K. Schuch, J.A. Bethke and R.A. Redak

Water stress and N fertilization can have a profound effect on populations of phytophagous insects. While species and cultivar selection can identify plants that are resistant to common insect pests, cultural practices may further decrease the susceptibility to insect attacks. Six poinsettia and six chrysanthemum cultivars were grown under well-watered or water-deficient conditions, and three fertilizer regimes with low, medium, or high concentrations of N. Vegetative plant growth and longevity and fecundity of various insect pests on these plants were determined. Host plant suitability to insects was estimated by the quantity of foliar soluble protein. Low irrigation reduced leaf area and leaf and stem dry weights 36% to 41% in poinsettias and 26% to 28% in chrysanthemum. Leaf area and leaf dry weight increased linearly in response to increasing fertilizer concentrations in poinsettia and chrysanthemum. Cultivar-specific differences were found for all variables of vegetative growth in poinsettiasand chrysanthemum. Cultivar also strongly affected insect preference, development, and fecundity. Low irrigation significantly reduced insect survivorship of the silverleaf whitefly on poinsettias. On chrysanthemum, leafminers, thrips, and melon aphids were unaffected by irrigation or fertilizer treatments. Chrysanthemum cultivar choice strongly affected the number of insects or development time.

Free access

U.K. Schuch, J.A. Bethke and R.A. Redak

Water stress and N fertilization can have a profound effect on populations of phytophagous insects. While species and cultivar selection can identify plants that are resistant to common insect pests, cultural practices may further decrease the susceptibility to insect attacks. Six poinsettia and six chrysanthemum cultivars were grown under well-watered or water-deficient conditions, and three fertilizer regimes with low, medium, or high concentrations of N. Vegetative plant growth and longevity and fecundity of various insect pests on these plants were determined. Host plant suitability to insects was estimated by the quantity of foliar soluble protein. Low irrigation reduced leaf area and leaf and stem dry weights 36% to 41% in poinsettias and 26% to 28% in chrysanthemum. Leaf area and leaf dry weight increased linearly in response to increasing fertilizer concentrations in poinsettia and chrysanthemum. Cultivar-specific differences were found for all variables of vegetative growth in poinsettiasand chrysanthemum. Cultivar also strongly affected insect preference, development, and fecundity. Low irrigation significantly reduced insect survivorship of the silverleaf whitefly on poinsettias. On chrysanthemum, leafminers, thrips, and melon aphids were unaffected by irrigation or fertilizer treatments. Chrysanthemum cultivar choice strongly affected the number of insects or development time.

Full access

Jonathan M. Frantz, James C. Locke and Dharmalingam S. Pitchay

The value of floriculture crops has risen in each of the last 10 years ( U.S. Department of Agriculture, 2005 ). New crops, better cultivars, and improved marketing have all contributed to this increase. Recently, a novel floriculture hanging

Full access

Benjamin K. Hoover

Floriculture crops had a wholesale value of $4.4 billion in the United States in 2015 ( U.S. Department of Agriculture, 2016 ). The floriculture industry produces many crops using specialized substrates, and many of these crops are produced from

Free access

Brandon R. Smith, Paul. R. Fisher and William R. Argo

The objective was to quantify the effect of substrate pH and micronutrient concentration on growth and pigment content for two floricultural crop species, Petunia ×hybrida `Priscilla' and Impatiens wallerana `Rosebud Purple Magic'. A 70% peat: 30% perlite medium was amended with dolomitic hydrated lime to achieve five substrate pH's ranging from pH 4.4 to 7.0. Plants were grown in 10-cm-diameter pots in a greenhouse for 4 weeks, and irrigated with a fertilizer containing (in mg·L-1) 210N-31P-235K-200Ca-49Mg. Micronutrients were applied using an EDTA (ethylenedinitrilotetraacetic acid) chelated micronutrient blend (C111), at 1×, 2×, and 4× concentrations (in mg·L-1) of 0.50Fe-0.25Mn-0.025Zn-0.04Cu-0.075B-0.01Mo. Petunia shoot dry mass and stem caliper decreased as substrate pH increased, whereas leaf length and width remained unchanged. The highest level of C111 resulted in higher dry mass and smaller leaf area compared with other C111 levels. Overall, substrate pH and C111 had little effect on plant size or mass for impatiens. For both species, increasing substrate pH above 5.3 resulted in a decline in chlorophyll, carotenoids, and the SPAD chlorophyll index (measured with a Minolta-502 SPAD meter) compared with the lowest three pH levels. Chlorosis was observed at pH 7 after 2 weeks of growth. Increasing C111 concentration had no effect on pigment content below pH 5.3, but increased pigment content at higher pH levels. The SPAD index was highly correlated with chlorophyll content. This research emphasizes that an acceptable range in substrate pH can vary depending on fertilizer practices, with higher micronutrient concentration compensating for lower solubility at high substrate pH.

Full access

Brian K. Hogendorp and Raymond A. Cloyd

Sanitation, which includes removing plant and growing medium debris, is an important component of any greenhouse or nursery pest management program. However, there is minimal quantitative information on how sanitation practices can reduce pest problems. In this study, conducted from May through Nov. 2005, we evaluated plant and growing medium debris as a source of insect pests from four greenhouses located in central Illinois. Two 32-gal refuse containers were placed in each greenhouse with a 3 × 5-inch yellow sticky card attached to the underside of each refuse container lid. Each week, yellow sticky cards and plastic refuse bags were collected from the containers and insects captured on the yellow sticky cards were identified. Insects captured on the yellow sticky cards were consistent across the four greenhouses with western flower thrips (Frankliniella occidentalis), fungus gnats (Bradysia spp.), and whiteflies (Bemisia spp.) the primary insects present each week. Insect numbers, in order of prevalence on the yellow sticky cards, varied across the four locations, which may be related to the type of plant debris discarded. For example, extremely high numbers of adult whiteflies (range = 702 to 1930) were captured on yellow sticky cards in one greenhouse each month from August through November. This was due to the presence of yellow sage (Lantana camera), bee balm (Monarda didyma), garden verbena (Verbena × hybrida), common zinnia (Zinnia elegans), sage (Salvia spp.) and fuchsia (Fuschia spp.) debris that was heavily-infested with the egg, nymph, pupa, and adult stages of whiteflies. High western flower thrips adult numbers in the greenhouses were generally associated with plant types such as marguerite daisy (Dendranthema frutescens) and pot marigold (Calendula officinalis) disposed while in bloom with opened yellow flowers, which contained adult western flower thrips. Based on the results of this study, it is important that greenhouse producers timely remove plant and growing medium debris from greenhouses or place debris into refuse containers with tight-sealing lids to prevent insect pests from escaping.

Full access

Juan-Carlos Cevallos and Michael S. Reid

After storage at different temperatures for a simulated transportation period, the vase lives at 20 °C (68 °F) of carnations (Dianthus caryophyllus `Imperial White'), daffodils (Narcissus pseudonarcissus `King Alfred'), iris (Iris hollandica `Telstar'), killian daisies (Chrysanthemum maximum), paperwhite narcissus (Narcissus tazetta `Paperwhite'), roses (Rosa {XtimesX} hybrida `Ambiance'), and tulips (Tulipa gesneriana) decreased with increasing storage temperature. There were no significant differences between the vase life of flowers stored dry and flowers stored in water when storage temperatures were from 0 to 10 °C (32 to 50 °F). The vase life after wet storage at temperatures of 12.5 °C (54.5 °F) and greater was significantly higher than vase life after dry storage at those temperatures for all the flowers studied. Iris and carnation flowers survived storage at 15 and 20 °C (59 and 68 °F) only when stored in water.

Full access

Holly L. Scoggins, Joyce G. Latimer and Victoria T. Barden

A survey was conducted in 2000-01 to provide a comprehensive description of Virginia's commercial greenhouse industry. A total of 274 responses were analyzed. Responses were categorized based on the amount of heated greenhouse space: small, medium, large, or other (including part-time). The survey included questions about growing space, number of employees, education and experience of respondent, crops grown, gross receipts, and target markets. Seventy-five percent of the respondents were owners or owners/growers and respondents reported an average of 15 years experience. Most greenhouse operations were classified as small or less than 10,000 ft2 (929.0 m2). A wide variety of crops were reported, with more than 50% growing bedding plants and nearly 50% growing herbaceous perennials in the greenhouse. Market outlets were about equally divided between wholesale and retail.