Search Results

You are looking at 101 - 110 of 344 items for :

  • "total phenolics" x
Clear All
Free access

Peter M. Hanson, Ray-yu Yang, Jane Wu, Jen-tzu Chen, Dolores Ledesma, Samson C.S. Tsou and Tung-Ching Lee

Tomato (Lycopersicon esculentum Mill.) is among the most widely consumed vegetables worldwide and an important source of certain antioxidants (AO) including lycopene, β-carotene, and vitamin C. Improvement of tomato for content of AO and overall antioxidant activity (AOA) could potentially benefit human health in many countries. We evaluated 50 L. esculentum and three L. pimpinellifolium (L.) Mill. entries for contents of lycopene, β-carotene, ascorbic acid, total phenolics, and two assays for antioxidant activity [anti-radical power (ARP) and inhibition of lipid peroxidation (ILP)] for 2 years during the same period in south Taiwan. We detected high levels of genetic diversity for the AO and AOA measured in this study. Group means of the L. pimpinellifolium entries were significantly higher than L. esculentum group means for ARP, ILP, lycopene, ascorbic acid, phenolics, and soluble solids concentration, suggesting that introgression of alleles from L. pimpinellifolium may have potential to improve cultivated tomato for these traits. Ranking of entries for ILP and ARP were consistent between years, particularly for those entries with the highest means and these assays could be adopted by tomato breeders. Results from ILP and ARP assays were highly correlated (r = 0.82**) and it would be unnecessary to use both assays for tomato. Lycopene, β-carotene, ascorbic acid, soluble solids, and total phenolics were all positively correlated with ARP. Among AO, total phenolics content was most closely associated with ARP (r = 0.90**) and ILP (r = 0.83**); this suggests that phenolics make a major contribution to AOA in tomato fruit. Fruit size was negatively correlated with ARP (r = -0.74**) and ILP (r = -0.71**), indicating that combining large fruit size and high AOA will be challenging.

Free access

Ki Sun Kim and Ji Ny Lee

There are many ground covers native to Korea. Liriope spicata is very promising for landscaping purposes due to its waxy and dark-green foliage fragrant and pink flowers, as well as fruit. However, seeds harvested during late fall do not germinate at all if they are sown in spring. Thus, series of experiments were conducted to undestand the physiological mechanism of dormancy breaking and germination of Liriope spicata Lour. seeds and to determine the effective methods for enhancing seed germination. Fruit were harvested in October through December. Depulped seeds germinated rapidly, indicating that one or more inhibitors may be present in the pulps of fruit and/or seeds. GA3, NaOCl, NaOH, and H2SO4 treatments and dry cold treatment had no effect on germination, whereas wet, cold seed treatment for at least 30 days promoted germination up to 75% within 15 days. Optimum conditions for germination was continuous dark and 25/20 °C alternate temperature conditions. Extracts from pulps and seeds showed a strong inhibition effects on the germination of lettuce seeds, indicating that germination inhibitors are present in pulp and seeds. Since extracts from naked seeds did not show inhibition, inhibitory substances are thought to be present in pulp and seedcoat. Pulp and seeds were extracted with water and methanol and autoclaved at 115 °C, followed by bioassay experiments. Germination inhibitors were found water soluble and heat stable by series of bioassay experiments. Diluted extracts 4 to 8 times still maintained inhibitory effects. Optimum seed harvesting time was from 22 Nov. to 1 Dec., where seed germination was high without additional seed treatments. Total phenolic compounds and ABA contents of pulp and seeds decreased by wet cold seed treatment. Changes in total phenolic compounds and ABA in from October through December were correlated with germination during the seed development. When contents of total phenolic compounds and ABA were high, seeds did not germinate at all, while low contents resulted in good seed germination.

Free access

Todd C. Einhorn, Cecil Stushnoff, Ann E. McSay, Phil L. Forsline, Sam Cox, Joel R.L. Ehrenkranz and Loretta Sandoval

Phlorizin is known for its role in reducing glucotoxicity and has a long history of use in diabetes research. In addition, its contribution to the pool of total phenolics adds to the overall health benefits attributed to fruit. Phlorizin is limited to Rosaceae family plants, of which apple comprises its current commercial source; however, limited information exists regarding its biodiversity among apple taxa. A subset of 22 taxa from a core collection of apple accessions representative of the global genetic diversity of apple was used to investigate the biodiversity of phlorizin present in apple shoots and in fruit relative to total phenolic content and free radical scavenging capacity. Fruit and shoots were harvested from the USDA Plant Genetic Resources Unit in Geneva, N.Y. Validation and quantification of phlorizin was conducted using a rigorous high-pressure liquid chromatography (HPLC) procedure. Total phenolics in fruit, assayed using a Folin-Ciocalteu method and expressed as gallic acid equivalents, ranged from 227 to 7181 mg·L-1

and were strongly related to 2,2' azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) antioxidant capacity for the core collection (r= 0.778). On a molar basis, phlorizin had lower antioxidant capacity than other major phenolic compounds present in apple fruit, but was more effective than ascorbic acid. Phlorizin yield in dormant apple shoots, expressed as percent weight, ranged from 0.9% to 5.5%. A rapid, 96 well micro-plate spectrophotometric assay was also developed to aid in the screening of multiple samples for selection of high phlorizin yielding apple taxa. Spectrophotometry overestimated phlorizin content as expected, but the calibration curve between HPLC and spectrophotometry was acceptable, r 2 = 0.88.

Full access

Camila P. Croge, Francine L. Cuquel, Paula T.M. Pintro, Luiz A. Biasi and Claudine M. De Bona

Antioxidants are compounds with varied chemical structures that are affected by biotic and abiotic factors. The objective of this study was to characterize and compare bioactive compounds and the antioxidant capacity of fruit from four blackberry cultivars produced under different climatic conditions. Ascorbic acid content, total polyphenols, flavonoids, monomeric anthocyanins and antioxidant activity of the fruit were evaluated, and high levels of bioactive compounds as well as antioxidant activity were observed regardless of the cultivar or growing location. The results showed that bioactive production is affected by the cultivar and environment. Furthermore, the antioxidant potential of the blackberry fruit depends on the total phenolics and anthocyanin.

Free access

Malkeet S. Padda and David H. Picha

Phenolic compounds and antioxidant activity were quantified in the principal sweetpotato cultivars marketed in the European Union. Total phenolic content, individual phenolic acids, and antioxidant activity in each cultivar were determined using Folin-Denis reagent, reversed-phase HPLC, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods, respectively. Significant differences in phenolic composition and antioxidant activity were found between cultivars. A Jamaican-grown, white-fleshed cultivar had the highest total phenolic content [4.11 mg·g-1 chlorogenic acid (dry tissue weight)], while the highest antioxidant activity [3.60 mg·g-1 Trolox (dry tissue weight)] was observed in the orange-fleshed California-grown cultivar Diane. Chlorogenic acid and 3,5-dicaffeoylquinic acid were the predominant phenolic acids, while caffeic acid was the least abundant in most cultivars. The highest content of chlorogenic acid (0.42 mg·g-1 dry tissue weight); 3,5-dicaffeoylquinic acid (0.43 mg·g-1 dry tissue weight); and 3,4-dicaffeoylquinic acid (0.25 mg·g-1 dry tissue weight) was present in the white-fleshed Jamaican cultivar. The orange-fleshed cultivars Diane and Beauregard had the highest content of caffeic acid (0.13 mg·g-1 dry tissue weight) and 4,5-dicaffeoylquinic acid (0.32 mg·g-1 dry tissue weight), respectively.

Free access

Wilhelmina Kalt, Agnes M. Rimando, Michele Elliot and Charles F. Forney

Recent interest in the human health-promoting properties of fruit phenolics, and especially fruit flavonoids, has stimulated research on how these secondary metabolites may be affected by pre- and postharvest horticultural factors. Resveratrol, although a minor phenolic in many fruit, possesses potent bioactivities, and is therefore of particular interest. To study the effects of postharvest storage and UV-C irradiation on selected phenolic components and antioxidant capacity of cranberry (Vaccinium macrocarpon), fruit of cv. Pilgrim, Stevens, and Bergman, were irradiated with UV-C at levels between 0 and 2.0 KJ·m-2, followed by storage at 9 °C for 7 and 17 d. Total phenolic content did not change during storage. However, resveratrol content was higher and antioxidant capacity (ORAC) was lower at 7 days of storage compared to 17 days. There was no main effect of UV-C on total phenolics, anthocyanins, resveratrol, or ORAC. However, there was an interaction between storage time and UV-C irradiation. Anthocyanin content was lower at 7 days, and higher at 17 days, at UV dosages of 1.0 or 2.0 KJ·m-2. Resveratrol content was higher in UV-C irradiated fruit at 7 days, while at 17 days there was no difference between UV-treated and untreated fruit.

Free access

Shiow Y. Wang and Hsin-Shan Lin

Fruit and leaves from different cultivars of thornless blackberry (Rubus sp.), red raspberry (Rubus idaeus L.), black raspberry (Rubus occidentalis L.), and strawberry (Fragaria × ananassa D.) plants were analyzed for total antioxidant capacity (oxygen radical absorbance capacity, ORAC) and total phenolic content. In addition, fruit were analyzed for total anthocyanin content. Compared to fruit, leaves were found to have higher ORAC values. In fruit, ORAC values ranged from 7.8 to 33.7 μmol Trolox equivalents (TE)/g of fresh berries, while in leaves, ORAC values ranged from 20.8 to 45.6 μmol TE/g of fresh leaves. Fruit harvested at different stages of maturity were analyzed in blackberries, raspberries, and strawberries. Blackberries and strawberries had their highest ORAC values during the green stages, while raspberries generally had the highest ORAC activity at the ripe stage (with exception of cv. Jewel, a black raspberry). Total anthocyanin content increased with maturity for all three fruit. There was a linear correlation existed between total phenolic content and ORAC activity for fruit and leaves. For ripe berries, there was also a linear relationship between ORAC values and anthocyanin content. Of the ripe fruit and leaves tested, raspberry plants appeared to be the richest source for antioxidants.

Free access

Xin Zhao, Edward Carey, James Nechols, Kim Williams and Weiqun Wang

Implications of dietary phenolic compounds for human health and disease prevention have been indicated by a body of literature. A greenhouse pot study was performed to investigate the impacts of fertilizer source and preventive insecticide application on phenolic compound levels in pac choi [Brassica rapa (L.) cv. Mei Qing]. A two-way randomized complete-block design with five replications was used in this experiment. Fertilizer source consisted of two levels: conventional fertilizer (pre-plant application of Osmocote slow-release fertilizer), and organic fertilizer (pre-plant application of vermicompost and fertigation with compost tea and fish emulsion). Insecticide application consisted of three levels: organic (pyrethrin) vs. conventional (permethrin), and a plain water control. At harvest, total phenolics and individual phenolic compounds in pac choi leaves (blades) were analyzed by Folin assay and HPLC, respectively. Head weight of pac choi was significantly higher under conventional fertilizer treatment, while it was not affected by insecticides. Total phenolic content of pac choi was significantly increased by organic fertilizer treatment. HPLC results indicated that organic fertilizer treatment resulted in significantly higher levels of individual phenolic compounds, including chlorogenic acid and ferulic acid. In contrast, preventive insecticide application showed little effect on the phenolics in pac choi. Correlation analysis excluded the influence of plant size (head weight) on phenolic content in pac choi. Differential N-forms, rates of nutrient release, and/or variable nutrient content in organic and conventional fertilizer treatments may contribute to elevated phenolic content in organically fertilized pac choi.

Free access

Keri L. Andersen, Susan L. Cuppett, Ellen T. Paparozzi and Paul E. Read

Phenolic levels have been analyzed in several grape cultivars that are suited for growing in southeastern Nebraska. The phenolic levels of these cultivars are not known to have been previously published. The polyphenol content of fruits and fruit products such as wine have been shown to be directly correlated to the antioxidant potential of the product. Antioxidants help to prevent the effects of aging and age-associated diseases. The grape cultivars in the study are grown primarily for wine production, but also as fresh table grapes and for making juice and jellies. The total phenolic content is being analyzed by the Folin-Ciocalteu method. Of the red grapes, `St. Croix' and `Frontenac' have the highest levels of polyphenols, followed by `Chambourcin' and `deChaunac', with levels varying from 1.4–4.9 mg·g-1 (polyphenols/grape), measured as gallic acid equivalents (GAE). The white grapes `Vignoles' and `LaCrosse' have total phenolic levels of 1.4 to 2.2 mg·g-1 (polyphenols/grape), also measured as gallic acid equivalents (GAE).

Free access

Wilhelmina Kalt, Christopher Lawand, Daniel A.J. Ryan, Jane E. McDonald, Horst Donner and Charles F. Forney

The antioxidant properties of blueberries have been examined only in ripe fruit, although fruit of different maturities are used in processed food products. In this study, highbush blueberry cultivars Bergitta, Bluegold, and Nelson highbush blueberry fruit at different stages of ripeness were examined to characterize differences in oxygen radical absorbing capacity (ORAC) and the phenolic components responsible for ORAC. Underripe fruit at different stages of maturity were also stored at 20 °C for up to 8 days to assess changes in ORAC and phenolic content. Anthocyanin content was substantially higher in fruit of more advanced stages of ripeness. In contrast, the phenolic content and ORAC were lower in the riper fruit. Anthocyanins continued to form during storage, although rate of pigment formation declined after about 4 days. Less anthocyanin pigment was formed in the less ripe fruit. After 8 days of storage, the anthocyanin content of fruit harvested 5% to 50% or 50% to 95% blue exceeded that of ripe fruit. Up to 60% of the total phenolic content could be accounted for by anthocyanins. ORAC was positively correlated with total phenolic content (R 2 = 0.78), but not with anthocyanin content.