Seed coats of developing fruit of peach [Prunus persica (L.) Batsch cvs. Redkist, Redskin, and Loring] were punctured at 31, 33, and 38 days after full bloom (DAFB), respectively. Injections of water, 390 mg GA3/liter, or 390 mg GA4+7/liter were made immediately following seed puncture. Seed puncture and water injection following puncture resulted in abscission of all fruit. Injection of GA3 and GA4+7 delayed abscission of `Redkist' and `Redskin' fruits of punctured seeds by 6 to 10 days. Both GA treatments resulted in normal growth into Stage II and increased fruit retention through Stage III in `Loring'. About 100 μl of 250, 500, or 1000 mg GA3/liter was injected into the locule of `Loring' fruits following seed puncture at 30, 40, or 50 DAFB. GA treatments at 30 DAFB resulted in≈ 75% fruit set in comparison to seeded control fruit, while fruit treated at 40 and 50 DAFB abscised by the end of Stage II. Increasing GA concentration from 250 to 1000 mg·liter-1 had no additional effect. Movement of the GA was examined by injecting 3H-GA1 into the locule following the puncture treatment. More than 97% remained in the fruit after 96 hours. The percentage of 3H recovered in the seed cavity decreased over time, whereas recovered label increased in both endocarp and mesocarp. The results suggest a potential regulatory role for seed-produced gibberellins during early Stage I of development. We have identified an apparent change in tissue sensitivity to gibberellin induction of seedless fruit development between 30 and 40 DAFB in `Loring' peach.
Plant Introduction (PI) accession 507984 of common bean (Phaseolus vulgaris L.) has partly colored seed coats and either pure white flowers or light laelia flowers. Crosses were made with white-flowered plants of PI 507984: white-flowered plant #1 × the genetic stock t ers ers2 BC2 5-593 and white-flowered plant #2 × recurrent parent dry bean breeding line 5-593. Inheritance was studied in the F1, F2, and F3 of the former cross and the F1 and F2 of the latter cross. PI 507984 (white flower, plant #1) × t ers ers2 BC2 5-593 gave F1 plants with colored flowers and partly colored seeds. The F2 gave a 9:7 segregation ratio (colored flowers to white flowers), and the genetic model proposed is that flower color is restored in the presence of t/t by two complementary genes, Fcr and Fcr-2. That model was confirmed by F3 progeny tests of 21 F2 parents with colored flowers. The cross PI 507984 (white flower, plant #2) × 5-593 gave an F2 segregation ratio of 9:3:4 (bishops-violet: light laelia: white flowers), indicating that the white-flowered PI 507984 has v lae masked by t. Analysis of all the data suggests that PI 507984 is heterogeneous at Fcr and Fcr-2, having all three possible homozygous genotypes, viz., either light laelia flowers from v lae t Fcr Fcr-2 or white flowers from v lae t Fcr fcr-2 or v lae t fcr Fcr-2. The flower color restoration gene in 5-593 is arbitrarily assigned the symbol Fcr. Great variability occurs in partly colored seeds of PI 507984 due to the environment in which the seed was produced.
Abstract
Food-quality comparisons between tropically adapted genotypes of dry bean (Phaseolus vulgaris L.) and accessions from domestic breeding agencies showed there is sufficient variability in important nutritional and canning traits among tropical beans to justify their use in temperate-climate breeding programs. Specifically, tropical bean germplasm may be of use to transfer stress tolerance and lodging resistance to commercially acceptable genotypes while the breeder is simultaneously breeding to maintain or improve nutritional composition and canning quality. Seed of 35 bean accessions representing plant introductions, breeding lines, and cultivars were screened for proximate chemical composition, yield, and several horticultural characters. Seventeen of these accessions, including several commercial dry bean cultivars, were selected for canning evaluations. Beans were adjusted to 16% moisture before soaking and processing. Soaked and processed beans were evaluated for water uptake, texture (with a Kramer Shear Press), and general canning quality. Protein content was highest in domestically adapted beans (31%) and lowest in the nonblack tropical array of genotypes (22%). Tropical beans showed a greater tendency to clump in the can after cooking. This indicates excessive breakdown of tropical beans during thermal processing. Nonsignificant correlation coefficients indicated that textural differences and soaking properties of the beans were not associated; however, textural differences were correlated with the final moisture percentage in processed tropically adapted beans. Several tropical genotypes were much firmer or much softer after cooking than ‘Sanilac’, which is considered the industry standard for making canning comparisons. Further evaluation of texture by examining Kramer Shear Press tracings showed that textural differences among genotypes could be broken down into a configuration showing a large shear force component, and a curve characterized by mostly compression. The curve types appeared to be a characteristic of the genotype rather than of seed-coat color, size of bean, or final moisture percentage.
and suffers from lodging, thus making mechanized harvesting difficult when it is cultivated without support. ‘Tavella Brisa Croscat’ was developed through selection with the aim of preserving the sensory traits of the landrace (low seed-coat
significant difference test at the 95% level. Results Seed structure and morphological characteristics. Sugar pine seeds are large, having a size of ≈1 cm in length and 5 mm in width. Seed coat color is brown to nearly black. Among the three genotypes examined
besides t are required to express various types of partly colored patterns, viz., Cl , Z , Bip , J , and Fib ( Bassett, 2007 ). Seed coat colors are controlled by 10 genes: P , [ C R ], Gy , Z , J , G , B , V , and Rk ( Bassett, 2007
Cited Calub, A.G. 1968 Inheritance of seed coat colour and colour pattern in Vigna sinensis MS thesis, University of the Philippines, college of agriculture. In: Cowpea: Abstract of world literature 14. UTA, Ibadan, Nigeria. Drabo, I. Ladeinde, T
24 cm long with 14 seeds. Coats of dried seeds have a smooth to wrinkled texture and red color ( Fig. 4A ). Seed size is large with a weight of 22.1 g per 100 dry seeds, and dry seeds have an ovoid shape. US-1136 plants grown for 12 weeks without
Cited Coumans, M. Come, D. Gaspars, T. 1976 Stabilized dormancy in sugarbeet fruits. I. Seed coats as a physicochemical barrier to oxygen Bot. Gaz. 137 274 278 Edelstein, M. Ben Tal, Y
hypochlorite and 0.1% (v/v) Tween 20 for 1.5 h in a laminar flow hood. Carbon source treatments. After disinfection, seeds coats were removed in half of the seeds and were then distributed randomly in nine media (86 or 87 seeds each) composed of WPM