Search Results

You are looking at 101 - 110 of 837 items for :

  • "pine bark" x
Clear All
Author:

Research reports documenting phosphorus leaching from soilless container media has changed commercial nursery phosphorus fertilizing practices. However, rhododendron growers are concerned that phosphorus levels are adequate as plants begin setting flower buds in July and August. Medium solution of 10 to 15 ppm P are recommended. Five replicated leachate samples were collected from 6 phosphate sources for 11 weeks following surface application to 2 container grown rhododendron cultivars. Each fertilizer source wax blended to an analysis of 14.0N-11.2P-5.0K except a 14.0N-0P-5.0K control. Phosphate sources included Diammonium Phosphate, Triple superphosphate, Sulfur coated Diammonium Phosphate, Sulfur coated triple superphosphate, and a commercial rhododendron sulfur coated fertilizer. With the exception of control, all treatment leachate phosphorus levels ranged from 180 to 145 ppm two days and 85 to 75 ppm one week after application. All sources ranged from 45 to 10 ppm weeks 2-5 and were lower than 10 ppm weeks 7-11. Leachate levels of the control were below 10 ppm at all sample times. Bud set and foliar P levels were different among phosphate treatments, but growth index measurements were not significant.

Free access
Authors: and

Abstract

Bulk density (BD) of potting media increased as the percentage of sand was increased in the medium. Because of the “fitting” together of particles, volume of medium mixtures was always less than the total volume of the separate components. Particle size distribution was determined most accurately on a volume basis and was used to identify the potting mixtures. The percentage of medium components (bark or sand) retained on any given sieve size could be determined from BD data. Percolation rate, and cation exchange capacity (CEC) declined as the percentage of sand was increased in the potting mixture. CEC was most accurately determined on a volume basis. Increasing the percentage of sand in the potting medium raised pH from 4.1 to 5.4.

Open Access

Abstract

Chrysanthemum morifolium Ramat. plants were grown in media with and without pine bark and treated with drenches of α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidinemethanol (ancymidol) at 0.25 mg/pot, (2RS,3RS)-l-(4-chlorophenyl)-4,4-dimethyl-2-(l,2,4-triazol-l-yl) pentan-3-ol (PP333) at 0.25 mg/pot, or α-(l-methylethyl)-α-[4-(trifluoromethoxy) phenyl]-5-pyrimidinemethanol (EL-500) at 0.0625 mg/pot, or two 5000 mg/liter foliar sprays of butanedioic acid mono-(2,2-dimethylhydrazide) (daminozide). Foliar sprays of daminozide controlled plant height equally in both media but drenches of ancymidol, PP333, and EL-500 were not effective when pine bark was included in the medium.

Open Access
Authors: and

Abstract

Nitrapyrin at 50 ppm, increased dry weights of tomato (Lycopersicon esculentum Mill.) and total N when pine bark comprised part of the medium and NH4 was part of the N treatment. If the medium consisted only of pine bark, nitrapyrin increased dry weights and total plant N with NO3–N and/or NH4–N treatments. The NO3–N level in the medium was higher with all N treatments when nitrapyrin was incorporated. The increase in plant growth is directly related to the higher NO3–N levels in each medium where nitrapyrin was incorporated. The higher media NO3–N with nitrapyrin are attributed to inhibition of the nitrification process and a subsequent inhibitory effect on NO3–N loss.

Open Access

One-year-old Rhododendron L. `Nova Zembla' were grown in four container media infested with Phytophthora cinnamomi Rands. The media (all v/v) were pine bark, 3 pine bark:1 sand, 3 pine bark:1 peat, and 1 peat: 1 sand: 1 soil. After 20 weeks, plants were evaluated for root rot symptoms and the total porosity, air space, moisture-holding capacity, and bulk density were determined for all media. All media provided adequate moisture-holding capacity for container production of rhododendron in noninfested media. Shoot fresh weight in noninfested media was positively correlated with bulk density and water (percent by volume) held in the 1.0- to 5.0-kPa matric tension range and negatively correlated with total porosity and air space. Root rot severity was greatest in peat: sand: soil, intermediate in pine bark: peat, and least in pine bark and pine bark: sand. Root rot severity was negatively correlated with total porosity and air space and positively correlated with bulk density and water (percent by volume) held in the 5.0- to 10.0-kPa matric tension range.

Free access

Abstract

An isolate of Thielaviopsis basicola (Berk. & Br.) Ferraris from Ilex crenata Thunb. was highly pathogenic to susceptible hollies while the isolate from Pelargonium × hortorum L.H. Bailey was less pathogenic. Various ratios of pine bark and sphagnum peatmoss did not suppress T. basicola on susceptible hollies. Of the cultivars tested, I. crenata ‘Helleri’ and I. pernyi Franch were most susceptible, while I. aquifolium L. × I. cornuta Lindl. and Paxt. ‘Nellie R. Stevens’, I. cornuta ‘Burfordii’ × I. peryni ‘Lydia Morris’, and I. cornuta ‘Burfordii Nana’ were the most resistant to T. basicola. I. crenata ‘Helleri’, grown in a medium with a pH of 5.0 or 6.0, had less black root rot development than similar plants in a medium with a pH of 6.5.

Open Access

Due to uncertainties of future supplies of pine bark (PB) and peatmoss, ground Pinus taeda logs [pine chips (PC)] were compared to ground PB as a potential container substrate for japanese holly (Ilex crenata Thunb. `Chesapeake'), azalea (Rhododendron obtusum Planch. `Karen'), and marigold (Tagetes erecta Big. `Inca Gold'). Plants were potted in 2.8-L plastic containers 8 Apr. 2004 with either 100% PC, 100% PB, or 75% PC:25%PB (v/v), and glasshouse grown 8 weeks for marigold and 13 weeks for holly and azalea. Plant dry weights were higher for marigold grown in 100% PB compared to 100% PC but not different from plants grown in 75% PC:25% PB. Plant dry weights of azalea were higher in 100% pine bark than both substrates containing chips. There was no difference in shoot dry weight for japanese holly between the three substrates. Root dry weight was higher for 75% PC:25% PB than for 100% PB, but root weight of 100% PB and 100% PC was the same. The percent air space for the PC was higher than the PB substrate but container capacity and available water was not different for the three substrates. Substrate solution electrical conductivity (EC) for PC, was lower than that of PB, possibly due to greater leaching with the more porous PC and nutrient retention by the PC. These factors could account for the cases where larger plants developed with the PB substrate. Nutrient analysis of the substrate solution indicated that there are no toxic nutrient levels associated with PC. The pH of PC is also acceptable for plant culture. As well, there was no apparent shrinkage due to decomposition during the course of this short-term experiment. Pine chips, therefore, offer potential as a container substrate for greenhouse and nursery crops.

Free access

Using various mulches for small-scale, commercial basil (Ocimum basilicum L.) production was examined. Sweet basil and bush basil, on raised beds with drip irrigation, were grown on bare ground or mulched with black polyethylene, wheat straw, hardwood bark, or mixed wood chips. Bacterial soft rot (Erwinia spp.) was highest for both basils grown with wheat straw and for sweet basil grown on bare ground or with back polyethylene mulch. Both basils grown with hardwood and pine bark mulches had few soft ret symptoms. All mulches provided acceptable weed control. Yields throughout the growing season were highest with black polyethylene mulch and lowest with hardwood and pine bark mulches.

Free access

Abstract

Experiments were conducted on the Easter lily cultivars (Lilium longiflorum thunb.) Ace and Nellie White over a 4-year period to compare ancymidol bulb dips to media drenches and foliar spray applications. Several bulb dip concentrations and durations were used. ‘Ace’ plants responded more than ‘Nellie White’ plants to bulb dips, primarily because of more natural vigorous growth of ‘Ace’ plants. A 1-hr dip at 33 ppm gave adequate height control, but flowering was delayed. Reliance on bulb dips to achieve optimum height control may be questionable because ancymidol must be applied before one is certain excessive height will be a problem. Chemical name used: α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidinemethanol (ancymidol).

Open Access

Abstract

Juniperus horizontalis ‘Andorra Compacta’ and Rhododendron simsii ‘Redwing’ were grown for 6 months in 3 media to evaluate selected nutrient sources at 2 lime levels. Sulfur-coated urea (SCU) induced the lowest final medium pH, and isobutylidene diurea (IBDU) induced the highest. Lime application to the 2 Canadian peat : 1 calcined clay medium (v/v) was detrimental to ‘Redwing’ azalea shoot growth. Nutrient source did not affect shoot or root growth of azaleas growing in the 2 pine bark : 1 sand medium (v/v). In general, SCU produced more azalea shoot and root growth than the other nutrient sources. Liming decreased juniper shoot growth in the 1 pine bark : 1 Canadian peat : 1 sand medium (by volume). Oxamide and Osmocote produced significantly more juniper shoot growth in the pine bark : sand and pine bark : Canadian peat : sand media than other nutrient sources. After 6 months, plants fertilized with either IBDU or SCU had a higher concentration of leaf N than did those fertilized with Osmocote (18N–2.6P–10K).

Open Access