Search Results

You are looking at 91 - 100 of 2,590 items for :

Clear All
Author:

application of low-biuret urea or potassium phosphite (0.49 gal/acre, 0N–12.2P–21.6K) at maximum peel thickness, which marks the end of the cell division stage in citrus fruit development, significantly increased the yield of commercially valuable large fruit

Full access

sources used were limestone ammonium nitrate (LAN, N = 28%) (for N trial), single superphosphate (P = 10.5%) (for P trial), and potassium chloride (K = 50%) (for K trial) applied as post plant 1 week after planting in the form of granules. All plants

Free access

The influence of potassium (K) on respiratory behavior, flesh firmness, and internal color of watermelon (Citrullus lanatus) was studied. Two cultivars (Crimson Sweet and Sangria) were planted at the Univ. of Florida research station, Gainesville. The fruits from both cultivars were harvested at two different stages of maturity (25 days and 35 days after anthesis). Respiration and ethylene production were measured using gas chromatography under a static system. The internal color was measured by a colorimeter, while the flesh and rind firmness were measured by a instron Universal pressure tester. Carbon dioxide and ethylene production were non-climacteric in behavior and were not greatly affected by K treatment or cultivar.

Free access

A 4-year field study on pecan [Carya illinoinensis (Wangenh.) K. Koch] provided indirect support of the supposition held by some U.S. pecan growers that air-blast foliar sprays of potassium nitrate (KNO3) plus surfactant enhances nut yield. While these treatments did not measurably influence yield components, foliar K nutrition, or net photosynthesis, they did suppress “yellow-type” aphid populations. While air-blast sprays of water alone suppressed aphid populations, the inclusion of KNO3 plus surfactant provided an additional level of suppression.

Free access

Abstract

Pot chrysanthemums (Chrysanthemummorifolium Ramat. ‘Bright Golden Anne’) were grown vegetatively for 5 weeks at 10 application rates of K. Two critical K levels were determined by correlating top fresh weights with K concentration in the most recently mature leaves. The critical foliar level associated with maximum yield was 2.3% K and that associated with 90% of maximum yield was 1.3% K. Potassium concentrations in leaves showing the earliest signs of K deficiency symptoms ranged from 0.6 to 0.7% K.

Open Access
Author:

Abstract

A field planting of ‘Bluecrop’, a mature highbush blueberry (Vaccinium corymbosum L.), on a Berryland soil type was subjected to differential levels of K fertilization over a 6-year period. Fruit yield and berry size were related to fertilizer treatment, leaf composition, and available soil K analysis. Blueberry production was highest at a 40 kg K/ha rate of potassium sulfate fertilizer which resulted in a leaf K sufficiency range between 0.45% and 0.55% K. Available soil K was significantly correlated to fruit yield.

Open Access

Release rates for 13 commercially available soluble and controlled-release K fertilizers were determined in sand columns at 21C. Potassium chloride, KMgSO4, and K2CO3 were leached completely from the columns within 3 or 4 weeks. Osmocote 0N-0P-38.3K, Multicote 9N-0P-26.7K, the two S-coated K2SO4 products, and Nutricote 2N-0P-30.8K Ty 180 all had similar release curves, with fairly rapid release during the first 20 to 24 weeks, slower release for the next 10 to 12 weeks, and virtually no K release thereafter.

Full access

species examined by Frantz et al. (2008) , all 14 accumulated additional amounts of Si in their leaves when supplemented with potassium silicate. Leaf tissue concentration varied from 237 mg·kg −1 Si for petunia ( Petunia × hybrida Vilm. ‘White madness

Free access

Field studies were conducted in Kansas, Nebraska, and Oklahoma in 1996 to evaluate the influence of nitrogen (N), phosphorus (P), and potassium (K) applied alone or in combination on the establishment rate of buffalograss [Buchloe dactyloides (Nutt.) Engelm.] from seed. `Cody' buffalograss burrs were planted at 98 kg·ha-1. Nitrogen was applied at 0 or 49 kg·ha-1 at planting and at 49 kg·ha-1 weekly or every other week for 5 weeks after seeding (WAS). The total N amounts applied were 0, 49, 147, or 294 kg·ha-1. Phosphorus and K were applied at rates of 0 or 49 kg·ha-1 at planting only. Percent buffalograss coverage ratings were taken weekly for up to 11 WAS. Buffalograss coverage was enhanced by N rates up to 147 kg·ha-1. Application of P improved buffalograss establishment at the Nebraska and Oklahoma sites but had no effect at the Kansas site. Potassium application had no influence on establishment at any site. Chemical names used: methyl 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]carbonyl]amino] sulfonyl]benzoate (metsulfuron methyl); 6-chloro-N,-diethyl-1,3,5-triazine-2,4-diamine (simazine)

Free access

Almond [Prunus dulcis (Mill.) D.A. Webb] yields have increased substantially since the 1961 publication of the Univ. of California (UC) guidelines for leaf potassium (K). Numerous growers and reputable analytical laboratories are concerned that the recommendations for leaf K are inadequate. A highly productive almond orchard with low leaf K was selected to reassess the leaf K critical value of 1.1% to1.4% and determine the relative sensitivity of various yield determinants to inadequate K availability. Baseline yields for 100 individual trees were measured in 1998 and four rates of potassium sulfate were applied under drip irrigation emitters to establish a range of July leaf K concentrations between 0.5% and 2.1%. No relationship was observed between leaf K and post-treatment yield measurements made in 1999. We also monitored individual limb units on trees from the treatment extremes for effects of low K availability on flower number, percentage fruit set, fruit size, spur mortality, and vegetative growth (potential fruiting sites in subsequent years). Those measurements indicated that although current-year yield determinants (percentage fruit set and fruit size) were not influenced by K deficiency, components of future yield were impacted negatively by low K availability: mortality of existing fruiting spurs was increased by K deficiency and growth of fruiting wood was reduced.

Free access